{"title":"Distribution of surface heat flow and effects on the subsurface temperatures in the northern part of Thrace Basin, NW Turkey","authors":"Kamil Erkan, Elif Balkan-Pazvantoğlu","doi":"10.1186/s40517-023-00253-7","DOIUrl":null,"url":null,"abstract":"<div><p>The Thrace Basin in northwestern Turkey is a deep Eocene–Oligocene hydrocarbon-bearing sedimentary basin. The basin has potential for geothermal energy utilization in the future due to its favorable geological conditions. In this study, we combined the available bottom hole temperature (BHT) data from 70 points with the thermal conductivity and radiogenic heat productions of the basin formations, and generated a detailed thermal model of the northern part of the basin. For heat flow determinations from the BHT data, we applied Bullard’s thermal resistance method on formation thermal conductivities and thicknesses. The results give an average surface heat flow of 65.8 ± 11.3 mW/m<sup>2</sup>. We obtained high heat flow values (75–80 mW/m<sup>2</sup>) in the eastern and western sides, and the central part of the study area. These relatively high heat flow values can be explained by the combined effect of basement topography and the variations in the radiogenic heat production of the basement rocks. The calculated subsurface temperatures in selected hydrocarbon fields vary in the range of 45–64 °C at 1 km depth, 99–136 °C at 3 km depth, and 155–208 °C at 5 km depth as a result of local variations of the surface heat flow and formation thermal resistances. These variations in subsurface temperatures can have significant effects on the cost of geothermal energy production in future.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-023-00253-7","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-023-00253-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The Thrace Basin in northwestern Turkey is a deep Eocene–Oligocene hydrocarbon-bearing sedimentary basin. The basin has potential for geothermal energy utilization in the future due to its favorable geological conditions. In this study, we combined the available bottom hole temperature (BHT) data from 70 points with the thermal conductivity and radiogenic heat productions of the basin formations, and generated a detailed thermal model of the northern part of the basin. For heat flow determinations from the BHT data, we applied Bullard’s thermal resistance method on formation thermal conductivities and thicknesses. The results give an average surface heat flow of 65.8 ± 11.3 mW/m2. We obtained high heat flow values (75–80 mW/m2) in the eastern and western sides, and the central part of the study area. These relatively high heat flow values can be explained by the combined effect of basement topography and the variations in the radiogenic heat production of the basement rocks. The calculated subsurface temperatures in selected hydrocarbon fields vary in the range of 45–64 °C at 1 km depth, 99–136 °C at 3 km depth, and 155–208 °C at 5 km depth as a result of local variations of the surface heat flow and formation thermal resistances. These variations in subsurface temperatures can have significant effects on the cost of geothermal energy production in future.
Geothermal EnergyEarth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍:
Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.