Active learning metamodelling for survival rate analysis of simulated emergency medical systems

IF 3.6 2区 工程技术 Q2 TRANSPORTATION
Francisco Antunes , Marco Amorim , Francisco Pereira , Bernardete Ribeiro
{"title":"Active learning metamodelling for survival rate analysis of simulated emergency medical systems","authors":"Francisco Antunes ,&nbsp;Marco Amorim ,&nbsp;Francisco Pereira ,&nbsp;Bernardete Ribeiro","doi":"10.1080/23249935.2022.2046203","DOIUrl":null,"url":null,"abstract":"<div><p>Emergency Medical Services (EMS) constitute a crucial pillar of today's cities by providing urgent medical responses to their citizens. Their study is often conducted via simulation, as the assessment of planning decisions is generally unfeasible in the existing systems. However, such models can become computationally expensive to run. Thus, metamodels can be used to approximate the simulation results.</p></div><div><p>In this work, a simulation metamodelling strategy supported on an active learning scheme is proposed to analyse the survival rate of a simulated EMS. The exploration process is guided through a series of grids towards simulation input regions whose output results match a specific survival rate defined a priori. This provides an efficient way of exploring the search space by channelling the computational effort to the most important input values, supporting the advantages of these methodologies in the EMS field, where their application is still seldom to the best of our knowledge.</p></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"20 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993522006844","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Emergency Medical Services (EMS) constitute a crucial pillar of today's cities by providing urgent medical responses to their citizens. Their study is often conducted via simulation, as the assessment of planning decisions is generally unfeasible in the existing systems. However, such models can become computationally expensive to run. Thus, metamodels can be used to approximate the simulation results.

In this work, a simulation metamodelling strategy supported on an active learning scheme is proposed to analyse the survival rate of a simulated EMS. The exploration process is guided through a series of grids towards simulation input regions whose output results match a specific survival rate defined a priori. This provides an efficient way of exploring the search space by channelling the computational effort to the most important input values, supporting the advantages of these methodologies in the EMS field, where their application is still seldom to the best of our knowledge.

用于模拟急救医疗系统生存率分析的主动学习元模型
紧急医疗服务(EMS)为市民提供紧急医疗响应,是当今城市的重要支柱。由于现有系统通常无法对规划决策进行评估,因此通常通过模拟来对其进行研究。然而,运行此类模型的计算成本很高。因此,元模型可用于近似模拟结果。在这项工作中,提出了一种基于主动学习方案的模拟元模型策略,用于分析模拟 EMS 的存活率。探索过程是在一系列网格的引导下进行的,目标是模拟输入区域,其输出结果与先验定义的特定存活率相匹配。这提供了一种探索搜索空间的有效方法,将计算工作引向最重要的输入值,支持这些方法在 EMS 领域的优势,据我们所知,这些方法在 EMS 领域的应用仍然很少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信