Characterising the notch root radii and analyses of stress concentration factors near the dominant valleys of rough surface profiles

Q4 Engineering
Silas Z. Gebrehiwot, Leonardo Espinosa-Leal, H. Remes, Marinus Vermunt
{"title":"Characterising the notch root radii and analyses of stress concentration factors near the dominant valleys of rough surface profiles","authors":"Silas Z. Gebrehiwot, Leonardo Espinosa-Leal, H. Remes, Marinus Vermunt","doi":"10.23998/rm.124815","DOIUrl":null,"url":null,"abstract":"Surface roughness is one of the key surface integrity factors affecting the strength and fatigue life of components. Stress concentrations occur due to the randomness of the surface profiles. The presence of a dominant valley, a complex geometry and interacting effects exasperate the severity of the stress concentrations. To estimate the theoretical stress concentration factor (SCF) at the valley, the notch root radius should be estimated carefully. We propose an effective method for estimating the root radius of the deepest valley using numerical derivative techniques. The surface roughness of a carefully sanded Alumec 89 block was measured using SJ-400 tester. The 1-D roughness data was used first to evaluate the root radius of the deepest valleys and then, estimate the SCF using analytical and computational methods. We used 2-D finite element (FE) models under uniaxial tension for the computational analyses. The validity of our method is based on determining the SCF using different theoretical methods and comparing the results to the FE calculations. The theoeritical estimations are made using the Neuber, Inglis and Arola-Ramulu approaches, whereas COMSOL Multiphysics is used for the FE analyses. Comparing the theoeritical methods with the FE calculations, the Arola-Ramulu approach was better, with a maximum of  error. The minimum deviations can be explained by the model containing parameters such as , and  which are inherent to the roughness profile of the material.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/rm.124815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Surface roughness is one of the key surface integrity factors affecting the strength and fatigue life of components. Stress concentrations occur due to the randomness of the surface profiles. The presence of a dominant valley, a complex geometry and interacting effects exasperate the severity of the stress concentrations. To estimate the theoretical stress concentration factor (SCF) at the valley, the notch root radius should be estimated carefully. We propose an effective method for estimating the root radius of the deepest valley using numerical derivative techniques. The surface roughness of a carefully sanded Alumec 89 block was measured using SJ-400 tester. The 1-D roughness data was used first to evaluate the root radius of the deepest valleys and then, estimate the SCF using analytical and computational methods. We used 2-D finite element (FE) models under uniaxial tension for the computational analyses. The validity of our method is based on determining the SCF using different theoretical methods and comparing the results to the FE calculations. The theoeritical estimations are made using the Neuber, Inglis and Arola-Ramulu approaches, whereas COMSOL Multiphysics is used for the FE analyses. Comparing the theoeritical methods with the FE calculations, the Arola-Ramulu approach was better, with a maximum of  error. The minimum deviations can be explained by the model containing parameters such as , and  which are inherent to the roughness profile of the material.
粗糙表面轮廓的缺口根半径表征及优势谷附近应力集中系数分析
表面粗糙度是影响零件强度和疲劳寿命的关键表面完整性因素之一。应力集中的发生是由于表面轮廓的随机性。优势山谷的存在、复杂的几何形状和相互作用加剧了应力集中的严重性。为了估计山谷处的理论应力集中系数,应仔细估计缺口根半径。我们提出了一种利用数值导数技术估计最深山谷根半径的有效方法。采用SJ-400型测试机对经过精砂处理的Alumec 89块表面粗糙度进行了测量。首先利用一维粗糙度数据评估最深山谷的根半径,然后利用分析和计算方法估计SCF。我们采用单轴拉伸下的二维有限元模型进行计算分析。本文方法的有效性是建立在用不同的理论方法确定SCF并将结果与有限元计算结果进行比较的基础上的。理论估计是使用Neuber, Inglis和Arola-Ramulu方法进行的,而COMSOL Multiphysics则用于有限元分析。理论方法与有限元计算结果的比较表明,Arola-Ramulu方法误差最大,效果较好。最小偏差可以用包含参数的模型来解释,这些参数是材料的粗糙度轮廓所固有的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rakenteiden Mekaniikka
Rakenteiden Mekaniikka Engineering-Mechanical Engineering
CiteScore
0.50
自引率
0.00%
发文量
2
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信