Lifei Zhu , Chushu Zhang , Yueyi Tang , Haixiang Zhou , Wenting Wang , Mian Wang , Qiang Yu , Furong Song , Jiancheng Zhang
{"title":"Fungal community structure analysis of peanut pod rot in soil in Hebei Province, China","authors":"Lifei Zhu , Chushu Zhang , Yueyi Tang , Haixiang Zhou , Wenting Wang , Mian Wang , Qiang Yu , Furong Song , Jiancheng Zhang","doi":"10.1016/j.ocsci.2023.02.008","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, peanut yield and quality are more seriously affected by pod rot disease in China. However, managing this disease has proven challenging due to the wide host range of its pathogens. In this study, four soil samples were collected from fields with pod rot disease in Hebei Province, and 454 pyrosequencing was used to analyze the fungal communities structure within them. All 38 490 ITS high-quality sequences were grouped into 1203 operational taxonomic units, the fungal community diversity of four soil samples was evaluated and compared using Shannon index and Simpson index. The results showed that members of <em>Ascomycota</em> were dominant, followed by <em>Basidiomycota</em>. According to the BLAST results at the species level, <em>Guehomyces</em> <em>had the highest abundance</em>, accounting for about 7.27%, followed by <em>Alternaria</em>, <em>Fusarium</em>, and <em>Davidiella</em>. The relative abundance of <em>Fusarium oxysporum</em> isolated from rotting peanuts in soil with peanut rot was higher than that in the control, indicating that <em>Fusarium oxysporum</em> might be one of the main pathogenic fungus of peanut rot in this area. This study delved into the broader fungal community associated with peanut pod rot, providing a theoretical foundation for preventing and treating this disease in agriculture.</p></div>","PeriodicalId":34095,"journal":{"name":"Oil Crop Science","volume":"8 2","pages":"Pages 97-103"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil Crop Science","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096242823000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, peanut yield and quality are more seriously affected by pod rot disease in China. However, managing this disease has proven challenging due to the wide host range of its pathogens. In this study, four soil samples were collected from fields with pod rot disease in Hebei Province, and 454 pyrosequencing was used to analyze the fungal communities structure within them. All 38 490 ITS high-quality sequences were grouped into 1203 operational taxonomic units, the fungal community diversity of four soil samples was evaluated and compared using Shannon index and Simpson index. The results showed that members of Ascomycota were dominant, followed by Basidiomycota. According to the BLAST results at the species level, Guehomyceshad the highest abundance, accounting for about 7.27%, followed by Alternaria, Fusarium, and Davidiella. The relative abundance of Fusarium oxysporum isolated from rotting peanuts in soil with peanut rot was higher than that in the control, indicating that Fusarium oxysporum might be one of the main pathogenic fungus of peanut rot in this area. This study delved into the broader fungal community associated with peanut pod rot, providing a theoretical foundation for preventing and treating this disease in agriculture.