{"title":"On Robust Expansiveness for Sectional Hyperbolic Attracting Sets","authors":"V. Araújo, J. Cerqueira","doi":"10.17323/1609-4514-2023-23-1-11-46","DOIUrl":null,"url":null,"abstract":"We prove that sectional-hyperbolic attracting sets for $C^1$ vector fields are robustly expansive (under an open technical condition of strong dissipative for higher codimensional cases). This extends known results of expansiveness for singular-hyperbolic attractors in $3$-flows even in this low dimensional setting. We deduce some converse results taking advantage of recent progress in the study of star vector fields: a robustly expansive non-singular vector field is uniformly hyperbolic; and a robustly transitive attractor is sectional-hyperbolic if, and only if, it is robustly expansive. In a low dimensional setting, we show that an attracting set of a $3$-flow is singular-hyperbolic if, and only if, it is robustly chaotic (robustly sensitive to initial conditions).","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2023-23-1-11-46","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
We prove that sectional-hyperbolic attracting sets for $C^1$ vector fields are robustly expansive (under an open technical condition of strong dissipative for higher codimensional cases). This extends known results of expansiveness for singular-hyperbolic attractors in $3$-flows even in this low dimensional setting. We deduce some converse results taking advantage of recent progress in the study of star vector fields: a robustly expansive non-singular vector field is uniformly hyperbolic; and a robustly transitive attractor is sectional-hyperbolic if, and only if, it is robustly expansive. In a low dimensional setting, we show that an attracting set of a $3$-flow is singular-hyperbolic if, and only if, it is robustly chaotic (robustly sensitive to initial conditions).
期刊介绍:
The Moscow Mathematical Journal (MMJ) is an international quarterly published (paper and electronic) by the Independent University of Moscow and the department of mathematics of the Higher School of Economics, and distributed by the American Mathematical Society. MMJ presents highest quality research and research-expository papers in mathematics from all over the world. Its purpose is to bring together different branches of our science and to achieve the broadest possible outlook on mathematics, characteristic of the Moscow mathematical school in general and of the Independent University of Moscow in particular.
An important specific trait of the journal is that it especially encourages research-expository papers, which must contain new important results and include detailed introductions, placing the achievements in the context of other studies and explaining the motivation behind the research. The aim is to make the articles — at least the formulation of the main results and their significance — understandable to a wide mathematical audience rather than to a narrow class of specialists.