Functional Calculus for Dual Quaternions

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
Stephen Montgomery-Smith
{"title":"Functional Calculus for Dual Quaternions","authors":"Stephen Montgomery-Smith","doi":"10.1007/s00006-023-01282-y","DOIUrl":null,"url":null,"abstract":"<div><p>We give a formula for <span>\\(f(\\eta ),\\)</span> where <span>\\(f:{\\mathbb {C}} \\rightarrow {\\mathbb {C}}\\)</span> is a continuously differentiable function satisfying <span>\\(f(\\bar{z}) = \\overline{f(z)},\\)</span> and <span>\\(\\eta \\)</span> is a dual quaternion. Note this formula is straightforward or well known if <span>\\(\\eta \\)</span> is merely a dual number or a quaternion. If one is willing to prove the result only when <i>f</i> is a polynomial, then the methods of this paper are elementary.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"33 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01282-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

We give a formula for \(f(\eta ),\) where \(f:{\mathbb {C}} \rightarrow {\mathbb {C}}\) is a continuously differentiable function satisfying \(f(\bar{z}) = \overline{f(z)},\) and \(\eta \) is a dual quaternion. Note this formula is straightforward or well known if \(\eta \) is merely a dual number or a quaternion. If one is willing to prove the result only when f is a polynomial, then the methods of this paper are elementary.

对偶四元数的泛函微积分
我们给出了\(f(\eta),\)的一个公式,其中\(f:{\mathbb{C}}\rightarrow{\math bb{C})是一个连续可微函数,满足\(f{z})=\overline{f(z)},\),\(\eta\)是对偶四元数。注意,如果\(\eta\)只是一个对偶数或四元数,则该公式是直接的或众所周知的。如果仅当f是多项式时才愿意证明结果,则本文的方法是初等的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信