Towards laser-induced fluorescence of nitric oxide in detonation

IF 1.7 4区 工程技术 Q3 MECHANICS
K. P. Chatelain, S. B. Rojas Chavez, J. Vargas, D. A. Lacoste
{"title":"Towards laser-induced fluorescence of nitric oxide in detonation","authors":"K. P. Chatelain,&nbsp;S. B. Rojas Chavez,&nbsp;J. Vargas,&nbsp;D. A. Lacoste","doi":"10.1007/s00193-023-01134-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to validate the new developments in our in-house spectroscopic code (KAT-LIF) to perform NO-LIF simulations for detonation conditions, as well as evaluating the capabilities of the NO-LIF diagnostic for characterizing H<span>\\(_2\\)</span>-air detonations. This objective was achieved in several steps. First, our in-house spectroscopic tool, KAT-LIF, was updated to perform NO-LIF simulations by notably developing a database of NO(A-X) transitions, currently unavailable in conventional spectroscopic databases, as well as collecting and implementing species-specific line broadening, line shifting, and quenching parameters for NO-LIF. Second, the validation of KAT-LIF was performed by comparing the simulation results with pre-existing simulation tools (LIFSim and LIFBASE) and experimental NO-LIF measurements in a laminar CH<span>\\(_4\\)</span>-air flame and H<span>\\(_2\\)</span>-air detonation. The validation results present satisfactory agreement of KAT-LIF and other simulation tools (LIFBASE, LIFSim) with experimental results for several conditions. For example, less than 20% discrepancy between the simulated and experimental NO-LIF profiles is observed for stoichiometric H<span>\\(_2\\)</span>-air detonation, initially at 20 kPa and 293 K. Third, qualitative and quantitative capabilities of the NO-LIF technique for detonation characterization are discussed, which include: shock detection, induction zone length measurements, and quantitative number density measurements.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 3","pages":"179 - 189"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-023-01134-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

This study aims to validate the new developments in our in-house spectroscopic code (KAT-LIF) to perform NO-LIF simulations for detonation conditions, as well as evaluating the capabilities of the NO-LIF diagnostic for characterizing H\(_2\)-air detonations. This objective was achieved in several steps. First, our in-house spectroscopic tool, KAT-LIF, was updated to perform NO-LIF simulations by notably developing a database of NO(A-X) transitions, currently unavailable in conventional spectroscopic databases, as well as collecting and implementing species-specific line broadening, line shifting, and quenching parameters for NO-LIF. Second, the validation of KAT-LIF was performed by comparing the simulation results with pre-existing simulation tools (LIFSim and LIFBASE) and experimental NO-LIF measurements in a laminar CH\(_4\)-air flame and H\(_2\)-air detonation. The validation results present satisfactory agreement of KAT-LIF and other simulation tools (LIFBASE, LIFSim) with experimental results for several conditions. For example, less than 20% discrepancy between the simulated and experimental NO-LIF profiles is observed for stoichiometric H\(_2\)-air detonation, initially at 20 kPa and 293 K. Third, qualitative and quantitative capabilities of the NO-LIF technique for detonation characterization are discussed, which include: shock detection, induction zone length measurements, and quantitative number density measurements.

Abstract Image

激光诱导一氧化氮爆轰荧光的研究
本研究旨在验证我们内部光谱代码(KAT-LIF)的新发展,以执行爆炸条件的NO-LIF模拟,以及评估NO-LIF诊断表征H \(_2\) -空气爆炸的能力。这个目标是分几个步骤实现的。首先,我们对内部光谱工具KAT-LIF进行了更新,通过开发目前在传统光谱数据库中无法获得的NO(a - x)跃迁数据库,以及收集和实现特定物种的谱线拓宽、谱线移动和NO- lif淬火参数,可以进行NO- lif模拟。其次,通过将模拟结果与已有的模拟工具(LIFSim和LIFBASE)以及层流CH \(_4\) -空气火焰和H \(_2\) -空气爆轰的NO-LIF实验结果进行比较,对KAT-LIF进行了验证。验证结果表明,KAT-LIF和其他仿真工具(LIFBASE、LIFSim)在多个条件下与实验结果吻合较好。例如,小于20% discrepancy between the simulated and experimental NO-LIF profiles is observed for stoichiometric H\(_2\)-air detonation, initially at 20 kPa and 293 K. Third, qualitative and quantitative capabilities of the NO-LIF technique for detonation characterization are discussed, which include: shock detection, induction zone length measurements, and quantitative number density measurements.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信