Entropy of Open System with Infinite Number of Conserved Links

Pub Date : 2022-08-01 DOI:10.5541/ijot.1105040
A. Moldavanov
{"title":"Entropy of Open System with Infinite Number of Conserved Links","authors":"A. Moldavanov","doi":"10.5541/ijot.1105040","DOIUrl":null,"url":null,"abstract":"Energy budget of open system is a critical aspect of its existence. Traditionally, at applying of energy continuity equation (ECE) for description of a system, ECE is considered as a declaration of local balance in the mathematical (infinitesimal) vicinity for the only point of interest and as such it does not contribute to entropy. In this paper, we consider transformation of ECE to account the effects in the physical (finite) vicinity with infinite number of energy links with environment. We define parameters of appropriate phase space and calculate Shannon’s, differential, and thermodynamic entropy. Shannon’s and differential entropies look sufficiently close while thermodynamic entropy demonstrates close character of variation in its functionality being different in its mathematical form. Physical applications to confirm contribution of a new concept to the real-world processes are also discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1105040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Energy budget of open system is a critical aspect of its existence. Traditionally, at applying of energy continuity equation (ECE) for description of a system, ECE is considered as a declaration of local balance in the mathematical (infinitesimal) vicinity for the only point of interest and as such it does not contribute to entropy. In this paper, we consider transformation of ECE to account the effects in the physical (finite) vicinity with infinite number of energy links with environment. We define parameters of appropriate phase space and calculate Shannon’s, differential, and thermodynamic entropy. Shannon’s and differential entropies look sufficiently close while thermodynamic entropy demonstrates close character of variation in its functionality being different in its mathematical form. Physical applications to confirm contribution of a new concept to the real-world processes are also discussed.
分享
查看原文
具有无穷数量守恒环节的开放系统的熵
开放系统的能量收支是其存在与否的一个重要方面。传统上,在应用能量连续性方程(ECE)来描述系统时,ECE被认为是对唯一感兴趣点的数学(无穷小)附近的局部平衡的声明,因此它对熵没有贡献。在本文中,我们考虑ECE的转换,以考虑在物理(有限)附近与无限数量的能源联系与环境的影响。我们定义适当相空间的参数,并计算香农熵、微分熵和热力学熵。香农熵和微分熵看起来非常接近,而热力学熵表现出其功能变化的密切特征,其数学形式不同。还讨论了物理应用,以确认新概念对现实世界过程的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信