General relativity in R: visual representation of Schwarzschild space using different coordinate systems

R. Hankin
{"title":"General relativity in R: visual representation of Schwarzschild space using different coordinate systems","authors":"R. Hankin","doi":"10.21105/JOSE.00091","DOIUrl":null,"url":null,"abstract":"In general relativity, Schwarzschild coordinates for a black hole have desirable properties such as asymptotic matching with flat-space spherical coordinates; but other coordinate systems can be used which have other advantages such as removing the non-physical coordinate singularity at the event horizon. Following Schwarzschild’s original publication in 1916 of his spherically symmetrical solution to the vacuum Einstein field equations, a variety of coordinate transformations have been described that highlight different features of the Schwarzschild metric. These include: Kruskal-Szekeres (Kruskal, 1960; Szekeres, 1960), Eddington-Finkelstein (Eddington, 1924; Finkelstein, 1958), Gullstrand-Painleve (Gullstrand, 1922; Painlevé, 1921), Lemaitre (Lemaître, 1933), and various Penrose transforms with or without a black hole (Hawking & Ellis, 1973). These are described in many undergraduate GR textbooks such as Schutz (2009) and Carroll (2019).","PeriodicalId":75094,"journal":{"name":"The Journal of open source education","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of open source education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21105/JOSE.00091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In general relativity, Schwarzschild coordinates for a black hole have desirable properties such as asymptotic matching with flat-space spherical coordinates; but other coordinate systems can be used which have other advantages such as removing the non-physical coordinate singularity at the event horizon. Following Schwarzschild’s original publication in 1916 of his spherically symmetrical solution to the vacuum Einstein field equations, a variety of coordinate transformations have been described that highlight different features of the Schwarzschild metric. These include: Kruskal-Szekeres (Kruskal, 1960; Szekeres, 1960), Eddington-Finkelstein (Eddington, 1924; Finkelstein, 1958), Gullstrand-Painleve (Gullstrand, 1922; Painlevé, 1921), Lemaitre (Lemaître, 1933), and various Penrose transforms with or without a black hole (Hawking & Ellis, 1973). These are described in many undergraduate GR textbooks such as Schutz (2009) and Carroll (2019).
R中的广义相对论:使用不同坐标系的史瓦西空间的视觉表示
在广义相对论中,黑洞的史瓦西坐标具有理想的性质,如与平面空间球面坐标的渐近匹配;但是可以使用具有其他优点的其他坐标系,例如去除事件视界处的非物理坐标奇异性。1916年,史瓦西首次发表了真空爱因斯坦场方程的球对称解,之后描述了各种坐标变换,突出了史瓦西度量的不同特征。其中包括:Kruskal-Szekeres(Kruskal,1960;Szekeres,1960)、Eddington Finkelstein(Eddington,1924;Finkelstein,1958)、Gullstrand Painleve(Gullstrant,1922;Painlevé,1921)、Lemaitre(Lemaître,1933),以及各种有或没有黑洞的Penrose变换(Hawking&Ellis,1973)。Schutz(2009)和Carroll(2019)等许多本科生GR教材都对这些进行了描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信