{"title":"The doubling metric and doubling measures","authors":"J. Flesch, A. Predtetchinski, Ville Suomala","doi":"10.4310/arkiv.2020.v58.n2.a2","DOIUrl":null,"url":null,"abstract":"We introduce the so--called doubling metric on the collection of non--empty bounded open subsets of a metric space. Given a subset $U$ of a metric space $X$, the predecessor $U_{*}$ of $U$ is defined by doubling the radii of all open balls contained inside $U$, and taking their union. If $U$ is open, the predecessor of $U$ is an open set containing $U$. The directed doubling distance between $U$ and another subset $V$ is the number of times that the predecessor operation needs to be applied to $U$ to obtain a set that contains $V$. Finally, the doubling distance between $U$ and $V$ is the maximum of the directed distance between $U$ and $V$ and the directed distance between $V$ and $U$.","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/arkiv.2020.v58.n2.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the so--called doubling metric on the collection of non--empty bounded open subsets of a metric space. Given a subset $U$ of a metric space $X$, the predecessor $U_{*}$ of $U$ is defined by doubling the radii of all open balls contained inside $U$, and taking their union. If $U$ is open, the predecessor of $U$ is an open set containing $U$. The directed doubling distance between $U$ and another subset $V$ is the number of times that the predecessor operation needs to be applied to $U$ to obtain a set that contains $V$. Finally, the doubling distance between $U$ and $V$ is the maximum of the directed distance between $U$ and $V$ and the directed distance between $V$ and $U$.