Yuta Suzuki, Tatsunori Taniai, Kotaro Saito, Y. Ushiku, Kanta Ono
{"title":"Self-supervised learning of materials concepts from crystal structures via deep neural networks","authors":"Yuta Suzuki, Tatsunori Taniai, Kotaro Saito, Y. Ushiku, Kanta Ono","doi":"10.1088/2632-2153/aca23d","DOIUrl":null,"url":null,"abstract":"Material development involves laborious processes to explore the vast materials space. The key to accelerating these processes is understanding the structure-functionality relationships of materials. Machine learning has enabled large-scale analysis of underlying relationships between materials via their vector representations, or embeddings. However, the learning of material embeddings spanning most known inorganic materials has remained largely unexplored due to the expert knowledge and efforts required to annotate large-scale materials data. Here we show that our self-supervised deep learning approach can successfully learn material embeddings from crystal structures of over 120 000 materials, without any annotations, to capture the structure-functionality relationships among materials. These embeddings revealed the profound similarity between materials, or ‘materials concepts’, such as cuprate superconductors and lithium-ion battery materials from the unannotated structural data. Consequently, our results enable us to both draw a large-scale map of the materials space, capturing various materials concepts, and measure the functionality-aware similarities between materials. Our findings will enable more strategic approaches to material development.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/aca23d","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Material development involves laborious processes to explore the vast materials space. The key to accelerating these processes is understanding the structure-functionality relationships of materials. Machine learning has enabled large-scale analysis of underlying relationships between materials via their vector representations, or embeddings. However, the learning of material embeddings spanning most known inorganic materials has remained largely unexplored due to the expert knowledge and efforts required to annotate large-scale materials data. Here we show that our self-supervised deep learning approach can successfully learn material embeddings from crystal structures of over 120 000 materials, without any annotations, to capture the structure-functionality relationships among materials. These embeddings revealed the profound similarity between materials, or ‘materials concepts’, such as cuprate superconductors and lithium-ion battery materials from the unannotated structural data. Consequently, our results enable us to both draw a large-scale map of the materials space, capturing various materials concepts, and measure the functionality-aware similarities between materials. Our findings will enable more strategic approaches to material development.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.