F. Pedonese, Eleonora Longo, B. Torracca, B. Najar, F. Fratini, R. Nuvoloni
{"title":"Antimicrobial and anti-biofilm activity of manuka essential oil against Listeria monocytogenes and Staphylococcus aureus of food origin","authors":"F. Pedonese, Eleonora Longo, B. Torracca, B. Najar, F. Fratini, R. Nuvoloni","doi":"10.4081/ijfs.2022.10039","DOIUrl":null,"url":null,"abstract":"The activity of manuka (Leptospermum scoparium) essential oil (EO) on biofilms of foodborne Listeria monocytogenes and Staphylococcus aureus has been studied. Seven strains of L. monocytogenes and 7 of S. aureus (5 methicillin-resistant) were tested. EO minimal inhibitory concentration (MIC), EO minimal bactericidal concentration (MBC) and biofilm production quantification were determined for each strain by microtiter methods. Moreover, EO Minimum Biofilm Inhibitory Concentration (MBIC) and Minimum Biofilm Eradicating Concentration (MBEC) were determined on 2 L. monocytogenes and 3 S. aureus that showed the best biofilm production. Finally, on 4 strains out of 5 (2 L. monocytogenes and 2 S. aureus) EO Biofilm Reduction Percentage (BRP) vs. untreated controls was assessed after a treatment with EO subinhibitory concentrations. The chemical composition of manuka essential oil was determined by Gas Chromatography- Electron Impact Mass Spectrometry (GCEIMS). The manuka EO demonstrated good antimicrobial activity: L. monocytogenes MIC and MBC were 0.466 mg/ml and 0.933 mg/ml, respectively, whereas S. aureus MIC and MBC were 0.233 mg/ml and 0.466 mg/ml, respectively. Furthermore, L. monocytogenes showed a MBIC of 0.933 mg/ml and a MBEC in the range of 0.933–1.865 mg/ml, whereas S. aureus had a MBIC in the range of 7.461–14.922 mg/ml and a MBEC of 14.922 mg/ml. L. monocytogenes revealed no significant BRP after the treatment with manuka EO, whereas S. aureus showed a BRP higher than 50% with MIC/2 and MIC/4 EO concentrations. These results provide information for feasible manuka EO applications in food production systems.","PeriodicalId":14508,"journal":{"name":"Italian Journal of Food Safety","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Food Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/ijfs.2022.10039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The activity of manuka (Leptospermum scoparium) essential oil (EO) on biofilms of foodborne Listeria monocytogenes and Staphylococcus aureus has been studied. Seven strains of L. monocytogenes and 7 of S. aureus (5 methicillin-resistant) were tested. EO minimal inhibitory concentration (MIC), EO minimal bactericidal concentration (MBC) and biofilm production quantification were determined for each strain by microtiter methods. Moreover, EO Minimum Biofilm Inhibitory Concentration (MBIC) and Minimum Biofilm Eradicating Concentration (MBEC) were determined on 2 L. monocytogenes and 3 S. aureus that showed the best biofilm production. Finally, on 4 strains out of 5 (2 L. monocytogenes and 2 S. aureus) EO Biofilm Reduction Percentage (BRP) vs. untreated controls was assessed after a treatment with EO subinhibitory concentrations. The chemical composition of manuka essential oil was determined by Gas Chromatography- Electron Impact Mass Spectrometry (GCEIMS). The manuka EO demonstrated good antimicrobial activity: L. monocytogenes MIC and MBC were 0.466 mg/ml and 0.933 mg/ml, respectively, whereas S. aureus MIC and MBC were 0.233 mg/ml and 0.466 mg/ml, respectively. Furthermore, L. monocytogenes showed a MBIC of 0.933 mg/ml and a MBEC in the range of 0.933–1.865 mg/ml, whereas S. aureus had a MBIC in the range of 7.461–14.922 mg/ml and a MBEC of 14.922 mg/ml. L. monocytogenes revealed no significant BRP after the treatment with manuka EO, whereas S. aureus showed a BRP higher than 50% with MIC/2 and MIC/4 EO concentrations. These results provide information for feasible manuka EO applications in food production systems.
期刊介绍:
The Journal of Food Safety (IJFS) is the official journal of the Italian Association of Veterinary Food Hygienists (AIVI). The Journal addresses veterinary food hygienists, specialists in the food industry and experts offering technical support and advice on food of animal origin. The Journal of Food Safety publishes original research papers concerning food safety and hygiene, animal health, zoonoses and food safety, food safety economics. Reviews, editorials, technical reports, brief notes, conference proceedings, letters to the Editor, book reviews are also welcome. Every article published in the Journal will be peer-reviewed by experts in the field and selected by members of the editorial board. The publication of manuscripts is subject to the approval of the Editor who has knowledge of the field discussed in the manuscript in accordance with the principles of Peer Review; referees will be selected from the Editorial Board or among qualified scientists of the international scientific community. Articles must be written in English and must adhere to the guidelines and details contained in the Instructions to Authors.