The Influence of Bleeding Direction on Starting Performance of Three-Dimensional Inward Turning Inlet

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Tianyu Gong, Yiqing Li, Feng juan Wei, Shiqichang Wu, Dehua Cao
{"title":"The Influence of Bleeding Direction on Starting Performance of Three-Dimensional Inward Turning Inlet","authors":"Tianyu Gong, Yiqing Li, Feng juan Wei, Shiqichang Wu, Dehua Cao","doi":"10.1155/2023/9378776","DOIUrl":null,"url":null,"abstract":"Bleeding is an effective method to improve the starting performance of the inlet, and the conventional method often adopts the bleeding to longitudinal direction. This article proposes the use of transversal bleeding method to explore the influence on starting capacity by changing the bleeding direction. The paper designs 6 bleeding inlets. By calculating the starting performance, it is found that the projected bleeding rate of the inlet, which is the direct factor influencing the starting performance, would change due to the direction change of bleeding, although designed with the same entrance. For the inlet designed with longitudinal slots and bleeding, it could reach the starting state at Mach 3.6, but it showed the unstart state when they are transversal direction. The same entrance, when inlet is designed by transversal bleeding with longitudinal slots, the starting Mach number would decrease to 3.8. For the changes of aerodynamic capabilities, there would be the “point jump” tendency when reaching starting state, but the same inlets would keep the similar performance when they get the starting state.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/9378776","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Bleeding is an effective method to improve the starting performance of the inlet, and the conventional method often adopts the bleeding to longitudinal direction. This article proposes the use of transversal bleeding method to explore the influence on starting capacity by changing the bleeding direction. The paper designs 6 bleeding inlets. By calculating the starting performance, it is found that the projected bleeding rate of the inlet, which is the direct factor influencing the starting performance, would change due to the direction change of bleeding, although designed with the same entrance. For the inlet designed with longitudinal slots and bleeding, it could reach the starting state at Mach 3.6, but it showed the unstart state when they are transversal direction. The same entrance, when inlet is designed by transversal bleeding with longitudinal slots, the starting Mach number would decrease to 3.8. For the changes of aerodynamic capabilities, there would be the “point jump” tendency when reaching starting state, but the same inlets would keep the similar performance when they get the starting state.
放血方向对三维内旋进气道起动性能的影响
放血是改善进气道起动性能的有效方法,常规方法多采用纵向放血。本文提出采用横向放血法,探讨改变放血方向对启动能力的影响。本文设计了6个出气口。通过对起动性能的计算发现,即使设计相同的进气道,也会由于出血性方向的改变而改变进气道的预计出血性,而出血性是影响起动性能的直接因素。纵向开缝放气进气道在马赫数为3.6时可以达到启动状态,但在横向开缝时则为不启动状态。同样的进气道,当进气道设计为纵向槽的横向放血时,起始马赫数将降低到3.8。由于气动性能的变化,在达到启动状态时会出现“点跃”的趋势,但相同的进气道在达到启动状态时仍保持相似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信