Dynamic characteristics of open-ends squeeze film dampers with air ingestion

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE
Zhenhuan Tang, X. Chen, Hailun Zhou, Yu Lu, Hongbin He
{"title":"Dynamic characteristics of open-ends squeeze film dampers with air ingestion","authors":"Zhenhuan Tang, X. Chen, Hailun Zhou, Yu Lu, Hongbin He","doi":"10.1515/tjj-2023-0032","DOIUrl":null,"url":null,"abstract":"Abstract In order to explore the air ingestion characteristics of the open-ends squeeze film dampers (SFD), a 3D computational fluid dynamics solution model of the SFD was proposed based. The setting of opening boundary conditions was considered, which was verified experimentally by the bidirectional excitation. The results revealed that with the same precession frequency, the smaller radial clearance leads to the greater oil film damping. An increasing oil supply and oil holes led to the smaller air ingestion range at the end. The design guideline for the open-ends SFD was investigated in the present work.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In order to explore the air ingestion characteristics of the open-ends squeeze film dampers (SFD), a 3D computational fluid dynamics solution model of the SFD was proposed based. The setting of opening boundary conditions was considered, which was verified experimentally by the bidirectional excitation. The results revealed that with the same precession frequency, the smaller radial clearance leads to the greater oil film damping. An increasing oil supply and oil holes led to the smaller air ingestion range at the end. The design guideline for the open-ends SFD was investigated in the present work.
进气时开口挤压膜阻尼器的动态特性
摘要为了研究开放式挤压膜阻尼器(SFD)的吸气特性,提出了基于SFD的三维计算流体动力学求解模型。考虑了开放边界条件的设置,并通过双向激励进行了实验验证。结果表明:在进动频率相同的情况下,径向间隙越小,油膜阻尼越大;供油量和油孔的增加导致末端进气量的减小。本文研究了开式SFD的设计准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信