Hausdorff dimension of sets defined by almost convergent binary expansion sequences

Pub Date : 2023-03-13 DOI:10.1017/S0017089523000046
Q. Song
{"title":"Hausdorff dimension of sets defined by almost convergent binary expansion sequences","authors":"Q. Song","doi":"10.1017/S0017089523000046","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the Hausdorff dimension of sets defined by almost convergent binary expansion sequences. More precisely, the Hausdorff dimension of the following set \n\\begin{align*} \\bigg\\{x\\in[0,1)\\;:\\;\\frac{1}{n}\\sum_{k=a}^{a+n-1}x_{k}\\longrightarrow\\alpha\\textrm{ uniformly in }a\\in\\mathbb{N}\\textrm{ as }n\\rightarrow\\infty\\bigg\\} \\end{align*}\n is determined for any \n$ \\alpha\\in[0,1] $\n . This completes a question considered by Usachev [Glasg. Math. J. 64 (2022), 691–697] where only the dimension for rational \n$ \\alpha $\n is given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0017089523000046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we study the Hausdorff dimension of sets defined by almost convergent binary expansion sequences. More precisely, the Hausdorff dimension of the following set \begin{align*} \bigg\{x\in[0,1)\;:\;\frac{1}{n}\sum_{k=a}^{a+n-1}x_{k}\longrightarrow\alpha\textrm{ uniformly in }a\in\mathbb{N}\textrm{ as }n\rightarrow\infty\bigg\} \end{align*} is determined for any $ \alpha\in[0,1] $ . This completes a question considered by Usachev [Glasg. Math. J. 64 (2022), 691–697] where only the dimension for rational $ \alpha $ is given.
分享
查看原文
由几乎收敛的二元展开序列定义的集合的Hausdorff维数
摘要本文研究了由几乎收敛的二元展开序列定义的集合的Hausdorff维数。更准确地说,对于[0,1]$中的任何$\alpha\,都可以确定以下集合\beggin{align*}\bigg{x\ in[0,1)\;:\;\frac{1}{n}\sum_{k=a}^{a+n-1}x_{k}\longrightarrow\alpha\textrm的Hausdorff维数。这就完成了Usachev[Glasg.Math.J.64(2022),691–697]考虑的一个问题,其中只给出了有理$\alpha$的维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信