Spatio-temporal distribution and chemical composition of PM2.5 in Changsha, China

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Nan-Nan Zhang, Yang Guan, Lei Yu, Fang Ma, Yi-Fan Li
{"title":"Spatio-temporal distribution and chemical composition of PM2.5 in Changsha, China","authors":"Nan-Nan Zhang,&nbsp;Yang Guan,&nbsp;Lei Yu,&nbsp;Fang Ma,&nbsp;Yi-Fan Li","doi":"10.1007/s10874-019-09397-y","DOIUrl":null,"url":null,"abstract":"<p>The rapid economic development and significant expansion of urban agglomerations in China have resulted in issues associated with haze and photochemical smog. Central China, a transitional zone connecting the eastern coast and western interior, suffers from increasing atmospheric pollution. This study performed a spatio-temporal analysis of fine particulate matter (PM<sub>2.5</sub>) pollution in Changsha, a provincial capital located in central China. Samples of PM<sub>2.5</sub> were collected at five different functional areas from September 2013 to August 2014. The PM<sub>2.5</sub> concentration at the five sampling sites was the highest in winter and the lowest in summer, with an average annual PM<sub>2.5</sub> concentration of 105.2?±?11.0?μg/m<sup>3</sup>. On average, residential sites had the highest concentrations of PM<sub>2.5</sub> while suburban sites had the lowest. We found that inorganic ionic species were dominant (~48%), organic species occupied approximately 25%, whereas EC (~3.7%) contributed insignificantly to the total PM<sub>2.5</sub> mass. Ion balance calculations show that the PM<sub>2.5</sub> samples at all sites were acidic, with increased acidity in spring and summer compared with autumn and winter. Air quality in Changsha is controlled by four major air masses: (1) Wuhan and the surrounding urban clusters, (2) the Changsha-Zhuzhou-Xiangtan urban agglomeration and the surrounding cities, and (3) southern and (4) eastern directions. The north–south transport channel is the most significant air mass trajectory in Changsha and has a significant impact on PM<sub>2.5</sub> pollution.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 1-2","pages":"1 - 16"},"PeriodicalIF":3.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-019-09397-y","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-019-09397-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 5

Abstract

The rapid economic development and significant expansion of urban agglomerations in China have resulted in issues associated with haze and photochemical smog. Central China, a transitional zone connecting the eastern coast and western interior, suffers from increasing atmospheric pollution. This study performed a spatio-temporal analysis of fine particulate matter (PM2.5) pollution in Changsha, a provincial capital located in central China. Samples of PM2.5 were collected at five different functional areas from September 2013 to August 2014. The PM2.5 concentration at the five sampling sites was the highest in winter and the lowest in summer, with an average annual PM2.5 concentration of 105.2?±?11.0?μg/m3. On average, residential sites had the highest concentrations of PM2.5 while suburban sites had the lowest. We found that inorganic ionic species were dominant (~48%), organic species occupied approximately 25%, whereas EC (~3.7%) contributed insignificantly to the total PM2.5 mass. Ion balance calculations show that the PM2.5 samples at all sites were acidic, with increased acidity in spring and summer compared with autumn and winter. Air quality in Changsha is controlled by four major air masses: (1) Wuhan and the surrounding urban clusters, (2) the Changsha-Zhuzhou-Xiangtan urban agglomeration and the surrounding cities, and (3) southern and (4) eastern directions. The north–south transport channel is the most significant air mass trajectory in Changsha and has a significant impact on PM2.5 pollution.

Abstract Image

长沙市PM2.5时空分布及化学成分分析
中国经济的快速发展和城市群的大规模扩张导致了与雾霾和光化学雾霾有关的问题。中部是连接东部沿海和西部内陆的过渡地带,大气污染日益严重。本研究对中国中部省会长沙的细颗粒物(PM2.5)污染进行了时空分析。2013年9月至2014年8月在5个不同功能区采集PM2.5样本。5个样点PM2.5浓度冬季最高,夏季最低,年均PM2.5浓度为105.2±11.0 μg/m3。平均而言,居民区的PM2.5浓度最高,而郊区的浓度最低。结果表明,无机离子种类占主导地位(~48%),有机离子种类占约25%,而EC(~3.7%)对PM2.5总质量的贡献不显著。离子平衡计算结果表明,各站点PM2.5均呈酸性,且春季和夏季的酸性较秋季和冬季有所增加。长沙市空气质量受四大气团控制:(1)武汉及其周边城市群,(2)长株潭城市群及其周边城市,(3)南方向和(4)东方向。南北输送通道是长沙市最显著的气团轨迹,对PM2.5污染有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信