Jialin Li , Yian Yin , Ni Zeng , Fengbo Liao , Mengxiao Lian , Xichen Zhang , Keming Zhang , Jingbo Li
{"title":"Normally-off AlGaN/AlN/GaN HEMT with a composite recessed gate","authors":"Jialin Li , Yian Yin , Ni Zeng , Fengbo Liao , Mengxiao Lian , Xichen Zhang , Keming Zhang , Jingbo Li","doi":"10.1016/j.spmi.2021.107064","DOIUrl":null,"url":null,"abstract":"<div><p><span>As we all know, the normally-off HEMT is very important to the safety of power electronic systems. To increase the threshold voltage of the device, this article proposes to cover Al</span><sub>2</sub>O<sub>3</sub> on the recessed P-GaN to form the recessed p-GaN HEMT covered with Al<sub>2</sub>O<sub>3</sub>. Through simulation calculation, covering Al<sub>2</sub>O<sub>3</sub> on P-GaN can effectively increase the threshold voltage, but the saturation current and transconductance will be severely reduced. Therefore, this article optimizes the structure and proposes a composite recessed-gate HEMT for the first time. It can obtain high saturation current and high transconductance while maintaining a high threshold voltage. Compared with the recessed p-GaN HEMT covered with Al<sub>2</sub>O<sub>3</sub><span>, the transconductance and saturation current of the composite recessed-gate HEMT are increased by 13.14% and 121.33%, respectively, while the threshold voltage is only reduced by 4.44% (4.3 V). In addition, the gate dielectric has a greater impact on device performance. Therefore, this paper analyzes the influence of the thickness of the Al</span><sub>2</sub>O<sub>3</sub> layer on the device through theoretical calculations and obtains the optimal value of the thickness. (T1 = 18.3 nm, Vth = 4.5 V, Isat = 456 mA/mm). The results show that the composite recessed gate has broad application prospects in the next generation of normally-off power device applications.</p></div>","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749603621002627","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 5
Abstract
As we all know, the normally-off HEMT is very important to the safety of power electronic systems. To increase the threshold voltage of the device, this article proposes to cover Al2O3 on the recessed P-GaN to form the recessed p-GaN HEMT covered with Al2O3. Through simulation calculation, covering Al2O3 on P-GaN can effectively increase the threshold voltage, but the saturation current and transconductance will be severely reduced. Therefore, this article optimizes the structure and proposes a composite recessed-gate HEMT for the first time. It can obtain high saturation current and high transconductance while maintaining a high threshold voltage. Compared with the recessed p-GaN HEMT covered with Al2O3, the transconductance and saturation current of the composite recessed-gate HEMT are increased by 13.14% and 121.33%, respectively, while the threshold voltage is only reduced by 4.44% (4.3 V). In addition, the gate dielectric has a greater impact on device performance. Therefore, this paper analyzes the influence of the thickness of the Al2O3 layer on the device through theoretical calculations and obtains the optimal value of the thickness. (T1 = 18.3 nm, Vth = 4.5 V, Isat = 456 mA/mm). The results show that the composite recessed gate has broad application prospects in the next generation of normally-off power device applications.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4