Nurul Huda, Sukmono Yogi Prayogi, Munawar Ahmad, Alfa Yuliana Dewi
{"title":"Klasifikasi Malaria Menggunakan Metode Image Processing Dari Sel Darah Merah Dengan Algoritma Convolutional Neural Network","authors":"Nurul Huda, Sukmono Yogi Prayogi, Munawar Ahmad, Alfa Yuliana Dewi","doi":"10.33633/joins.v7i2.7068","DOIUrl":null,"url":null,"abstract":"Penyakit malaria merupakan infeksi penyakit yang ditularkan oleh nyamuk baik dari manusia ataupun hewan lain melalui protozoa parasit yang biasa disebut plasmodium. Malaria bisa berakibat fatal jika terlambat dideteksi dikarenakan dapat mengakibatkan anemia akut, gagal ginjal, hingga berujung kematian. Infeksi malaria sebenarnya bisa dideteksi dini menggunakan sampel sel darah merah, dikarenakan sel darah merah yang terinfeksi parasit akan tampak pola atau bercak. Dalam penelitian ini menggunakan data set publik berupa gambar sel darah merah yang terinfeksi protozoa parasit dan tidak terinfeksi. Beberapa peneliti sudah melakukan penelitian untuk mengklasifikasikan penyakit malaria dari sampel sel darah merah. Pada umumnya peneliti sebelumnya menggunakan metode image processing dengan mengubah gambar menjadi negatif untuk kemudian di klasifikasikan menggunakan metode klasifikasi tertentu. Di dalam penelitian ini penulis mencoba mengembangkan metode lain yaitu dengan melakukan pre-prosessing terlebih dahulu terhadap data set yang ada yaitu dengan mengubah ukuran gambar menjadi ukuran PIXEL 100x100, untuk kemudian dilakukan image augmentation untuk memperbanyak data set sehingga kemungkinan akurasi naik menjadi lebih tinggi. Proses selanjutnya yaitu mengubah dimensi gambar yang semula berdimensi tiga menjadi 1 dimensi dengan proses fitur reduksi menggunakan PCA (Principle Component Analysis) hasil dari fitur reduksi tersebut selanjutnya diklasifikasikan menggunakan metode Convolutional Neural Network (CNN). Hasil dari penelitian menunjukkan peningkatan akurasi yang lebih baik menjadi 98,30% dengan menggunakan metode tersebut.Kata kunci: image processing, CNN Classifier, Malaria, image augmentation, PCA","PeriodicalId":33057,"journal":{"name":"JOINS Journal of Information System","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINS Journal of Information System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33633/joins.v7i2.7068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Penyakit malaria merupakan infeksi penyakit yang ditularkan oleh nyamuk baik dari manusia ataupun hewan lain melalui protozoa parasit yang biasa disebut plasmodium. Malaria bisa berakibat fatal jika terlambat dideteksi dikarenakan dapat mengakibatkan anemia akut, gagal ginjal, hingga berujung kematian. Infeksi malaria sebenarnya bisa dideteksi dini menggunakan sampel sel darah merah, dikarenakan sel darah merah yang terinfeksi parasit akan tampak pola atau bercak. Dalam penelitian ini menggunakan data set publik berupa gambar sel darah merah yang terinfeksi protozoa parasit dan tidak terinfeksi. Beberapa peneliti sudah melakukan penelitian untuk mengklasifikasikan penyakit malaria dari sampel sel darah merah. Pada umumnya peneliti sebelumnya menggunakan metode image processing dengan mengubah gambar menjadi negatif untuk kemudian di klasifikasikan menggunakan metode klasifikasi tertentu. Di dalam penelitian ini penulis mencoba mengembangkan metode lain yaitu dengan melakukan pre-prosessing terlebih dahulu terhadap data set yang ada yaitu dengan mengubah ukuran gambar menjadi ukuran PIXEL 100x100, untuk kemudian dilakukan image augmentation untuk memperbanyak data set sehingga kemungkinan akurasi naik menjadi lebih tinggi. Proses selanjutnya yaitu mengubah dimensi gambar yang semula berdimensi tiga menjadi 1 dimensi dengan proses fitur reduksi menggunakan PCA (Principle Component Analysis) hasil dari fitur reduksi tersebut selanjutnya diklasifikasikan menggunakan metode Convolutional Neural Network (CNN). Hasil dari penelitian menunjukkan peningkatan akurasi yang lebih baik menjadi 98,30% dengan menggunakan metode tersebut.Kata kunci: image processing, CNN Classifier, Malaria, image augmentation, PCA