Design of hypersonic wavecatcher intake at Mach 12 with rectangular-to-elliptical shape transition

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE
Feng-Yuan Zuo , Sannu Mölder
{"title":"Design of hypersonic wavecatcher intake at Mach 12 with rectangular-to-elliptical shape transition","authors":"Feng-Yuan Zuo ,&nbsp;Sannu Mölder","doi":"10.1016/j.jppr.2023.04.001","DOIUrl":null,"url":null,"abstract":"<div><p>Wavecatcher (inward-turning) intake flows, at design Mach 12, are investigated numerically, to display the effect of wall temperature on flow structures and intake performance. Hypersonic experiments on shock wave/boundary layer interaction are used to validate the Spalart-Allmaras turbulence model for reproducing the features of hypersonic flow. Simulations of hypersonic intake flow are performed at different wall temperatures, including isothermal <em>T</em><sub><em>w</em></sub> = 300 K, <em>T</em><sub><em>w</em></sub> = 1000 K, <em>T</em><sub><em>w</em></sub> = 2000 K, and the adiabatic case. The shock structures, impinging shock positions, surface streamlines, and the development of internal streamwise vortices are discussed. The mass-averaged performance of intake flow shows that, when the wall temperature changes from <em>T</em><sub><em>w</em></sub> = 300 K to adiabatic, the mass capture coefficient decreases from 0.991 to 0.933, the total pressure recovery decreases from 0.200 to 0.083, while exit section Mach number decreases from 4.478 to 3.514. The results suggest that the osculating design method of wavecatcher intake design can successfully be extended to Mach 12, while capturing all airflow at isothermal wall conditions.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 2","pages":"Pages 167-179"},"PeriodicalIF":5.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212540X23000305","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Wavecatcher (inward-turning) intake flows, at design Mach 12, are investigated numerically, to display the effect of wall temperature on flow structures and intake performance. Hypersonic experiments on shock wave/boundary layer interaction are used to validate the Spalart-Allmaras turbulence model for reproducing the features of hypersonic flow. Simulations of hypersonic intake flow are performed at different wall temperatures, including isothermal Tw = 300 K, Tw = 1000 K, Tw = 2000 K, and the adiabatic case. The shock structures, impinging shock positions, surface streamlines, and the development of internal streamwise vortices are discussed. The mass-averaged performance of intake flow shows that, when the wall temperature changes from Tw = 300 K to adiabatic, the mass capture coefficient decreases from 0.991 to 0.933, the total pressure recovery decreases from 0.200 to 0.083, while exit section Mach number decreases from 4.478 to 3.514. The results suggest that the osculating design method of wavecatcher intake design can successfully be extended to Mach 12, while capturing all airflow at isothermal wall conditions.

马赫数为12的矩形转椭圆型高超声速吸波器进气道设计
在设计马赫数为12的情况下,对吸波器(向内转)进气流动进行了数值研究,以显示壁面温度对流动结构和进气性能的影响。利用激波/边界层相互作用的高超声速实验,验证了Spalart-Allmaras湍流模型再现高超声速流动特征的有效性。在等温Tw = 300 K、等温Tw = 1000 K、等温Tw = 2000 K和绝热情况下,对高超声速进气道流动进行了模拟。讨论了激波结构、冲击激波位置、表面流线和内部流向涡的发展。进气流动质量平均性能表明,当壁面温度从Tw = 300 K变为绝热时,质量捕获系数从0.991减小到0.933,总压恢复从0.200减小到0.083,出口段马赫数从4.478减小到3.514。结果表明,捕波器进气设计的模拟设计方法可以成功地扩展到12马赫,同时捕获等温壁面条件下的所有气流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信