Machine learning refractive index model and nitrogen implantation studies of zinc arsenic tellurite glasses

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Shaik Kareem Ahmmad, G. Nataraju, Nazima Siddiqui, Mohammed Muzammil Ahmed, M. A. Haleem Rizwan, Mohamad Raheem Ahmed, A. S. Sai Prasad
{"title":"Machine learning refractive index model and nitrogen implantation studies of zinc arsenic tellurite glasses","authors":"Shaik Kareem Ahmmad,&nbsp;G. Nataraju,&nbsp;Nazima Siddiqui,&nbsp;Mohammed Muzammil Ahmed,&nbsp;M. A. Haleem Rizwan,&nbsp;Mohamad Raheem Ahmed,&nbsp;A. S. Sai Prasad","doi":"10.1007/s41779-023-00928-1","DOIUrl":null,"url":null,"abstract":"<div><p>The first time machine learning-based refractive index model proposed based on the density parameter using a glass dataset of 2000 oxide glass samples to predict refractive index of the xZnF<sub>2</sub>-(20-x)ZnO-40As<sub>2</sub>O340TeO<sub>2</sub>. The study uses various machine learning techniques such as gradient decent, artificial neural network, and random forest regression to predict the refractive index and density of glasses. The random forest regression (RFR) model is found to be the most effective with a maximum R<sup>2</sup> value of 0.950 in the case of refractive index prediction and 0.926 for density prediction. The study also investigates the effects of nitrogen ion implantation on the glasses, finding that increased nitrogen dose causes a reduction in density and an increase in refractive index. The glass transition temperature decreases with increased nitrogen dose, possibly due to implantation defects. However, the glass stability increases with increasing implantation dose for low and high fluorine content glasses, likely due to the development of band gap defect levels and an increase in carrier concentration.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"59 5","pages":"1443 - 1452"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-023-00928-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The first time machine learning-based refractive index model proposed based on the density parameter using a glass dataset of 2000 oxide glass samples to predict refractive index of the xZnF2-(20-x)ZnO-40As2O340TeO2. The study uses various machine learning techniques such as gradient decent, artificial neural network, and random forest regression to predict the refractive index and density of glasses. The random forest regression (RFR) model is found to be the most effective with a maximum R2 value of 0.950 in the case of refractive index prediction and 0.926 for density prediction. The study also investigates the effects of nitrogen ion implantation on the glasses, finding that increased nitrogen dose causes a reduction in density and an increase in refractive index. The glass transition temperature decreases with increased nitrogen dose, possibly due to implantation defects. However, the glass stability increases with increasing implantation dose for low and high fluorine content glasses, likely due to the development of band gap defect levels and an increase in carrier concentration.

Abstract Image

碲化锌砷玻璃的机器学习折射率模型及氮注入研究
利用2000个氧化玻璃样品的玻璃数据集,提出了基于密度参数的基于时间机器学习的折射率模型,用于预测xZnF2-(20-x)ZnO-40As2O340TeO2的折射率。该研究利用梯度正派、人工神经网络、随机森林回归等多种机器学习技术来预测玻璃的折射率和密度。随机森林回归(RFR)模型在折射率预测和密度预测中最有效,R2最大值分别为0.950和0.926。研究还探讨了氮离子注入对玻璃的影响,发现氮离子注入量的增加会导致密度的降低和折射率的增加。随着氮剂量的增加,玻璃化转变温度降低,这可能是由于注入缺陷造成的。然而,对于低氟含量和高氟含量的玻璃,玻璃稳定性随着注入剂量的增加而增加,可能是由于带隙缺陷水平的发展和载流子浓度的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Australian Ceramic Society
Journal of the Australian Ceramic Society Materials Science-Materials Chemistry
CiteScore
3.70
自引率
5.30%
发文量
123
期刊介绍: Publishes high quality research and technical papers in all areas of ceramic and related materials Spans the broad and growing fields of ceramic technology, material science and bioceramics Chronicles new advances in ceramic materials, manufacturing processes and applications Journal of the Australian Ceramic Society since 1965 Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信