Matrix modelling and optimisation calculation method for large-scale integrated We-Energy

IF 1.6 Q4 ENERGY & FUELS
Ning Zhang, Lingxiao Yang, Qiuye Sun, Yushuai Li
{"title":"Matrix modelling and optimisation calculation method for large-scale integrated We-Energy","authors":"Ning Zhang,&nbsp;Lingxiao Yang,&nbsp;Qiuye Sun,&nbsp;Yushuai Li","doi":"10.1049/esi2.12069","DOIUrl":null,"url":null,"abstract":"<p>We-Energy (WE), as an important energy unit with full duplex and multi-energy carriers in the integrated energy system, uses the coupling matrix to connect the network-side and demand-side energy. However, the coupling matrix of WE is very hard to be formulated directly due to the complicated internal structure and the flexibility of operation mode. This paper proposes a multi-step method for the modelling of WE. According to the method, the conversion process in the WE can be separated into several steps and the WE model can be built by the coupling matrix in each step. Then, the WE model is extended by considering the renewable energy, location of storage and different types of demand response. Because of the non-linearity caused by the dispatch factors, the computational complexity increases greatly for solving the optimal scheduling issue of the WE. In order to reduce the computational burden, the variable substitution is added in the proposed modelling method. The results of simulation cases are presented to demonstrate the performance of the proposed modelling and calculation method.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12069","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

We-Energy (WE), as an important energy unit with full duplex and multi-energy carriers in the integrated energy system, uses the coupling matrix to connect the network-side and demand-side energy. However, the coupling matrix of WE is very hard to be formulated directly due to the complicated internal structure and the flexibility of operation mode. This paper proposes a multi-step method for the modelling of WE. According to the method, the conversion process in the WE can be separated into several steps and the WE model can be built by the coupling matrix in each step. Then, the WE model is extended by considering the renewable energy, location of storage and different types of demand response. Because of the non-linearity caused by the dispatch factors, the computational complexity increases greatly for solving the optimal scheduling issue of the WE. In order to reduce the computational burden, the variable substitution is added in the proposed modelling method. The results of simulation cases are presented to demonstrate the performance of the proposed modelling and calculation method.

Abstract Image

大型集成电网的矩阵建模与优化计算方法
自能(WE)作为综合能源系统中具有全双工、多能量载体的重要能源单元,利用耦合矩阵将网络侧和需求侧的能量连接起来。然而,由于WE内部结构的复杂性和运行方式的灵活性,耦合矩阵很难直接表述。本文提出了一种多步骤的WE建模方法。根据该方法,可以将WE中的转换过程分成几个步骤,并通过每个步骤中的耦合矩阵来建立WE模型。然后,通过考虑可再生能源、存储位置和不同类型的需求响应,扩展了WE模型。由于调度因素引起的非线性,使得求解电网最优调度问题的计算量大大增加。为了减少计算量,在建模方法中加入了变量替换。仿真结果验证了所提出的建模和计算方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信