Formation and Control of Hexagonal Pyramid Structures from GaN -Based Pillar-Shaped Structures Using Focused Ion-Beam Process

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Woon Jae Ruh, Hyeon Jin Choi, Jong Hoon Kim, Seung Woo Jeon, Young-Kyun Noh, Mino Yang, Young Heon Kim
{"title":"Formation and Control of Hexagonal Pyramid Structures from GaN -Based Pillar-Shaped Structures Using Focused Ion-Beam Process","authors":"Woon Jae Ruh,&nbsp;Hyeon Jin Choi,&nbsp;Jong Hoon Kim,&nbsp;Seung Woo Jeon,&nbsp;Young-Kyun Noh,&nbsp;Mino Yang,&nbsp;Young Heon Kim","doi":"10.1007/s13391-023-00435-2","DOIUrl":null,"url":null,"abstract":"<p>The formation of controllable 3D structures on the surface of layered optoelectronic devices using GaN-based semiconductors is important for improving the external quantum efficiency by enhancing the light-emitting efficiency. In this study, as-grown short hexagonal pillar structures on GaN-based semiconductors were transformed into a hexagonal pyramid shape during a focused ion-beam process. After forming the hexagonal pyramid shape, it was found that the size of the hexagonal pyramid can be adjusted by varying the sputtering time while preserving the pyramid shape. The transformation of the as-grown pillar structures to 3D hexagonal pyramids was demonstrated by analyzing the morphological evolution with the sputtering time by simulating the FIB process and calculating the effective ion bombardment area during sputtering.</p>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 1","pages":"49 - 55"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00435-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The formation of controllable 3D structures on the surface of layered optoelectronic devices using GaN-based semiconductors is important for improving the external quantum efficiency by enhancing the light-emitting efficiency. In this study, as-grown short hexagonal pillar structures on GaN-based semiconductors were transformed into a hexagonal pyramid shape during a focused ion-beam process. After forming the hexagonal pyramid shape, it was found that the size of the hexagonal pyramid can be adjusted by varying the sputtering time while preserving the pyramid shape. The transformation of the as-grown pillar structures to 3D hexagonal pyramids was demonstrated by analyzing the morphological evolution with the sputtering time by simulating the FIB process and calculating the effective ion bombardment area during sputtering.

Abstract Image

Abstract Image

利用聚焦离子束工艺从氮化镓基柱状结构中形成和控制六方金字塔结构
在使用氮化镓基半导体的层状光电器件表面形成可控的三维结构,对于通过提高发光效率来改善外部量子效率非常重要。在本研究中,通过聚焦离子束工艺将氮化镓基半导体上生长的短六角形支柱结构转变为六角形金字塔形状。在形成六角金字塔形状后,研究发现六角金字塔的大小可以通过改变溅射时间来调整,同时保持金字塔的形状。通过模拟 FIB 过程和计算溅射过程中的有效离子轰击面积,分析形态随溅射时间的变化,证明了生长的柱状结构向三维六角形金字塔的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信