Munaisyah Abdullah, Salah Mohammed Al-Nawah, Husna Osman, J. Jaffar
{"title":"LICENSE PLATE RECOGNITION TECHNIQUES: COMPARATIVE STUDY","authors":"Munaisyah Abdullah, Salah Mohammed Al-Nawah, Husna Osman, J. Jaffar","doi":"10.22452/mjcs.sp2021no1.9","DOIUrl":null,"url":null,"abstract":"Vehicle License Plate Recognition (LPR) has become a crucial system for various applications such as security monitoring, parking access, law enforcement and so on. LPR is employed for the identification of vehicles using their license plate. Recently, LPR technology has evolved progressively where vast improvement had been made towards the development of the image recognition’s quality and speed, as well as its state of the art methods. Although several research studies managed to resolve most of the issues that arise in LPR systems, more studies need to be conducted to improve the performance of LPR. This paper aims to provide a comprehensive analysis and comparison of different methods used in LPR. It summarizes each of the methods in terms of their accuracy, performance, strengths and weaknesses. Based on the recognition techniques used, LPR is then characterized into two categories, namely Traditional Computer Vision and Deep Learning Techniques.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.sp2021no1.9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicle License Plate Recognition (LPR) has become a crucial system for various applications such as security monitoring, parking access, law enforcement and so on. LPR is employed for the identification of vehicles using their license plate. Recently, LPR technology has evolved progressively where vast improvement had been made towards the development of the image recognition’s quality and speed, as well as its state of the art methods. Although several research studies managed to resolve most of the issues that arise in LPR systems, more studies need to be conducted to improve the performance of LPR. This paper aims to provide a comprehensive analysis and comparison of different methods used in LPR. It summarizes each of the methods in terms of their accuracy, performance, strengths and weaknesses. Based on the recognition techniques used, LPR is then characterized into two categories, namely Traditional Computer Vision and Deep Learning Techniques.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus