Every Salem number is a difference of two Pisot numbers

Pub Date : 2023-08-01 DOI:10.1017/S0013091523000433
A. Dubickas
{"title":"Every Salem number is a difference of two Pisot numbers","authors":"A. Dubickas","doi":"10.1017/S0013091523000433","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we prove that every Salem number is expressible as a difference of two Pisot numbers. More precisely, we show that for each Salem number α of degree d, there are infinitely many positive integers n for which $\\alpha^{2n-1}-\\alpha^n+\\alpha$ and $\\alpha^{2n-1}-\\alpha^n$ are both Pisot numbers of degree d and that the smallest such n is at most $6^{d/2-1}+1$. We also prove that every real positive algebraic number can be expressed as a quotient of two Pisot numbers. Earlier, Salem himself had proved that every Salem number can be written in this way.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this note, we prove that every Salem number is expressible as a difference of two Pisot numbers. More precisely, we show that for each Salem number α of degree d, there are infinitely many positive integers n for which $\alpha^{2n-1}-\alpha^n+\alpha$ and $\alpha^{2n-1}-\alpha^n$ are both Pisot numbers of degree d and that the smallest such n is at most $6^{d/2-1}+1$. We also prove that every real positive algebraic number can be expressed as a quotient of two Pisot numbers. Earlier, Salem himself had proved that every Salem number can be written in this way.
分享
查看原文
每个塞勒姆数都是两个皮索数的差
摘要在本文中,我们证明了每个Salem数都可以表示为两个Pisot数的差。更准确地说,我们证明了对于d阶的每个Salem数α,都有无限多个正整数n,其中$\alpha^{2n-1}-\alpha^n+\alpha$和$\alpha^{2n-1}-\α^n$都是d次的皮索数,并且最小的n至多为$6^{d/2-1}+1$。我们还证明了每一个实正代数数都可以表示为两个Pisot数的商。早些时候,塞勒姆自己已经证明了每个塞勒姆数都可以这样写。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信