{"title":"Thermal Behavior of Insulation Fiberboards Made from MDF and Paper Wastes","authors":"B. Moezzipour, Aida Moezzipour","doi":"10.5552/drvind.2021.2019","DOIUrl":null,"url":null,"abstract":"Today, recycling is becoming increasingly important. In recycling process, the product performance should also be considered. In this study, manufacturing insulation fiberboard, as a practical wood product from recycled fibers, was investigated. For this purpose, two types of waste (MDF wastes and waste paper) were recycled to fibers and used for producing insulation fiberboards. The target fiberboard density was 0.3 g/cm3. The ratio of waste paper to MDF waste recycled fibers (WP/RF) was considered at two levels of 70/30 and 50/50. Polyvinyl acetate adhesive was used as a variable in the board manufacturing process. The mechanical properties, dimensional stability, thermal conductivity, and fire resistance of the boards were evaluated. Besides, the thermal stability of fiberboards was studied using thermal analysis including thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results showed that the insulation fiberboards had admissible mechanical properties and dimensional stability. The manufactured boards displayed low thermal conductivity, which proved to be well competitive with other insulation materials. The fiberboards manufactured with PVAc adhesive and WP/RF ratio of 50/50 had higher fire resistance compared to other treatments. Additionally, results of thermal analysis showed that the use of PVAc adhesive and WP/RF ratio of 50/50 leads to improved thermal stability. Overall, the recycled fibers from MDF and paper wastes appear to be appropriate raw materials for manufacturing thermal insulation panels, and use of PVAc adhesive can significantly improve thermal and practical properties of insulation fiberboards.","PeriodicalId":11427,"journal":{"name":"Drvna Industrija","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drvna Industrija","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5552/drvind.2021.2019","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 0
Abstract
Today, recycling is becoming increasingly important. In recycling process, the product performance should also be considered. In this study, manufacturing insulation fiberboard, as a practical wood product from recycled fibers, was investigated. For this purpose, two types of waste (MDF wastes and waste paper) were recycled to fibers and used for producing insulation fiberboards. The target fiberboard density was 0.3 g/cm3. The ratio of waste paper to MDF waste recycled fibers (WP/RF) was considered at two levels of 70/30 and 50/50. Polyvinyl acetate adhesive was used as a variable in the board manufacturing process. The mechanical properties, dimensional stability, thermal conductivity, and fire resistance of the boards were evaluated. Besides, the thermal stability of fiberboards was studied using thermal analysis including thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results showed that the insulation fiberboards had admissible mechanical properties and dimensional stability. The manufactured boards displayed low thermal conductivity, which proved to be well competitive with other insulation materials. The fiberboards manufactured with PVAc adhesive and WP/RF ratio of 50/50 had higher fire resistance compared to other treatments. Additionally, results of thermal analysis showed that the use of PVAc adhesive and WP/RF ratio of 50/50 leads to improved thermal stability. Overall, the recycled fibers from MDF and paper wastes appear to be appropriate raw materials for manufacturing thermal insulation panels, and use of PVAc adhesive can significantly improve thermal and practical properties of insulation fiberboards.
期刊介绍:
"Drvna industrija" ("Wood Industry") journal publishes original scientific and review papers, short notes, professional papers, conference papers, reports, professional information, bibliographical and survey articles and general notes relating to the forestry exploitation, biology, chemistry, physics and technology of wood, pulp and paper and wood components, including production, management and marketing aspects in the woodworking industry.