Implementation of Naive Bayes Classification Algorithm in Determining Appropriate Help Targets of Unlimited Houses (RTLH) in Bojonegoro District

Anissa Nurul Farida Tussholikhah, Nurissaidah Ulinnuha, W. D. Utami
{"title":"Implementation of Naive Bayes Classification Algorithm in Determining Appropriate Help Targets of Unlimited Houses (RTLH) in Bojonegoro District","authors":"Anissa Nurul Farida Tussholikhah, Nurissaidah Ulinnuha, W. D. Utami","doi":"10.24114/cess.v8i2.46295","DOIUrl":null,"url":null,"abstract":"Rumah merupakan salah satu kebutuhan primer bagi setiap individu, dan termasuk kedalam aset terpenting yang harus dimiliki. Kelayakan rumah yang layak huni dan tidak layak huni harus dipertimbangkan. Rumah yang tidak memenuhi kecukupan minimum dari segi ruang dan luas ruangan dianggap sebagai Rumah tidak layak huni (RTLH). Untuk mengatasi terjadinya peningkatan RTLH maka pemerintah menanggulanginya dengan memberikan bantuan kepada masyarakat yang layak menerima dengan tepat sasaran. Penelitian ini bertujuan untuk menerapkan metode Naïve Bayes dalam menentukan bantuan tepat sasaran menggunakan dua kelas penelitian, yakni layak menerima bantuan RTLH dan tidak layak menerima bantuan RTLH. Dari analisis klasifikasi menggunakan confusion matrix didapatkan hasil akurasi sebesar 63%, recall 100% dan presisi 25% untuk 400 data training dan 100 data testing dari total 500 data dengan 10 atribut pengujian.The house is one of the primary needs for every individual, and is included in the most important asset that must be owned. The livability of the livable and uninhabitable houses should be considered. A house that does not meet the minimum adequacy in terms of space and room area is considered an uninhabitable house (RTLH). To overcome the increase in RTLH, the government overcomes it by providing assistance to people who deserve to receive it on target. This study aims to apply the Naïve Bayes method in determining targeted assistance using two research classes, namely eligible to receive RTLH assistance and not eligible to receive RTLH assistance. From the classification analysis using the confusion matrix, the results obtained are 63% accuracy, 100% recall and 25% precision for 400 training data and 100 testing data from a total of 500 data with 10 test attributes.","PeriodicalId":53361,"journal":{"name":"CESS Journal of Computer Engineering System and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESS Journal of Computer Engineering System and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/cess.v8i2.46295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rumah merupakan salah satu kebutuhan primer bagi setiap individu, dan termasuk kedalam aset terpenting yang harus dimiliki. Kelayakan rumah yang layak huni dan tidak layak huni harus dipertimbangkan. Rumah yang tidak memenuhi kecukupan minimum dari segi ruang dan luas ruangan dianggap sebagai Rumah tidak layak huni (RTLH). Untuk mengatasi terjadinya peningkatan RTLH maka pemerintah menanggulanginya dengan memberikan bantuan kepada masyarakat yang layak menerima dengan tepat sasaran. Penelitian ini bertujuan untuk menerapkan metode Naïve Bayes dalam menentukan bantuan tepat sasaran menggunakan dua kelas penelitian, yakni layak menerima bantuan RTLH dan tidak layak menerima bantuan RTLH. Dari analisis klasifikasi menggunakan confusion matrix didapatkan hasil akurasi sebesar 63%, recall 100% dan presisi 25% untuk 400 data training dan 100 data testing dari total 500 data dengan 10 atribut pengujian.The house is one of the primary needs for every individual, and is included in the most important asset that must be owned. The livability of the livable and uninhabitable houses should be considered. A house that does not meet the minimum adequacy in terms of space and room area is considered an uninhabitable house (RTLH). To overcome the increase in RTLH, the government overcomes it by providing assistance to people who deserve to receive it on target. This study aims to apply the Naïve Bayes method in determining targeted assistance using two research classes, namely eligible to receive RTLH assistance and not eligible to receive RTLH assistance. From the classification analysis using the confusion matrix, the results obtained are 63% accuracy, 100% recall and 25% precision for 400 training data and 100 testing data from a total of 500 data with 10 test attributes.
Naive Bayes分类算法在确定Bojonegoro地区无限制房屋(RTLH)适当帮助目标中的实现
家是每个人的主要需求之一,也是最重要的资产。必须考虑适合居住和不适合居住的房子的可行性。没有足够的空间和空间空间的房子被认为是不适合居住的房子(RTLH)。为了解决RTLH日益增长的问题,政府通过向有价值的社区提供有针向性的援助来解决这些问题。本研究旨在应用“天真贝斯”的方法,使用两门研究课程来确定目标援助,即获得RTLH的帮助和不获得RTLH的帮助。通过使用孔子矩阵的分类分析,可以获得63%的准确性,恢复100%和精确25%的500个数据培训和100个测试数据,共有10个测试属性。这所房子是每一个人的主要需求之一,包括在最重要的资产中,这必须加以约束。应该考虑到房子的流动性和不可负担的性质。在这样的空间和空间中,一个不符合最小的场景的房子被认为是一个不适应能力的房子。为了克服RTLH的增加,政府通过向应该以目标为代价的人们提供援助而结束了它。这项研究旨在利用两项研究的关系,以证明天真的贝斯的方法可以实现目的。使用孔子矩阵进行的分类分析结果显示,结果是63%的准确,100%的恢复数据和100个测试数据来自500个测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
40
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信