{"title":"Boundary element analysis of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites","authors":"M. Fahmy, MohammedA. Almehmadi","doi":"10.1515/eng-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract The primary goal of this article is to implement a dual reciprocity boundary element method (DRBEM) to analyze problems of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites. To solve the governing equations in the half-space deformation model, an implicit–implicit scheme was utilized in conjunction with the DRBEM because of its advantages, such as dealing with more complex shapes of fiber-reinforced composites and not requiring the discretization of the internal domain. So, DRBEM has low RAM and CPU usage. As a result, it is adaptable and effective for dealing with complex fiber-reinforced composite problems. For various generalized magneto-thermoelasticity theories, transient temperature, displacements, and thermal stresses have been computed numerically. The numerical results are represented graphically to demonstrate the effects of functionally graded parameters and rotation on magnetic thermal stresses in the fiber direction. To validate the proposed method, the obtained results were compared to those obtained using the normal mode method, the finite difference method, and the finite element method. The outcomes of these three methods are extremely consistent.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":"12 1","pages":"313 - 322"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract The primary goal of this article is to implement a dual reciprocity boundary element method (DRBEM) to analyze problems of rotating functionally graded anisotropic fiber-reinforced magneto-thermoelastic composites. To solve the governing equations in the half-space deformation model, an implicit–implicit scheme was utilized in conjunction with the DRBEM because of its advantages, such as dealing with more complex shapes of fiber-reinforced composites and not requiring the discretization of the internal domain. So, DRBEM has low RAM and CPU usage. As a result, it is adaptable and effective for dealing with complex fiber-reinforced composite problems. For various generalized magneto-thermoelasticity theories, transient temperature, displacements, and thermal stresses have been computed numerically. The numerical results are represented graphically to demonstrate the effects of functionally graded parameters and rotation on magnetic thermal stresses in the fiber direction. To validate the proposed method, the obtained results were compared to those obtained using the normal mode method, the finite difference method, and the finite element method. The outcomes of these three methods are extremely consistent.
期刊介绍:
Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.