{"title":"Enhancing the Electroplated Chromium Coating for Corrosion Protection of Aluminum by Adding Graphene Oxide","authors":"Shadi Shakiba, Nesa Sherkat Khabbazi, Arvin Taghizadeh Tabrizi, Hossein Aghajani","doi":"10.3103/S1068375522020107","DOIUrl":null,"url":null,"abstract":"<p>The effect of the addition of graphene oxide (GO) particles to the chromium electroplated coating on the surface of commercially pure aluminum (Al 1100) was studied in this paper. The synthesized coatings microhardness was characterized by the atomic force microscopy, field emission scanning electron microscopy, and the corrosion behavior was evaluated by using polarization and electrochemical impedance spectroscopy in the 3.5 wt % NaCl solution. The obtained Cr/GO nanocomposite shows remarkable improvement in the value of the surface microhardness, and the highest value achieved at the sample composed with 10 wt % of GO equals 1526 HV<sub>0.5</sub>. The results gained from polarization and electrochemical impedance microscopy demonstrated that the sample with the 5 wt % of GO has better corrosion resistance, which is due to the coating compactness and active galvanic couples.</p>","PeriodicalId":49315,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"58 2","pages":"202 - 209"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375522020107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 4
Abstract
The effect of the addition of graphene oxide (GO) particles to the chromium electroplated coating on the surface of commercially pure aluminum (Al 1100) was studied in this paper. The synthesized coatings microhardness was characterized by the atomic force microscopy, field emission scanning electron microscopy, and the corrosion behavior was evaluated by using polarization and electrochemical impedance spectroscopy in the 3.5 wt % NaCl solution. The obtained Cr/GO nanocomposite shows remarkable improvement in the value of the surface microhardness, and the highest value achieved at the sample composed with 10 wt % of GO equals 1526 HV0.5. The results gained from polarization and electrochemical impedance microscopy demonstrated that the sample with the 5 wt % of GO has better corrosion resistance, which is due to the coating compactness and active galvanic couples.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.