{"title":"Peculiarities of the Evolution of Electrical Discharge Cavitation in a Magnetic Field","authors":"A. P. Malyushevskaya, P. P. Malyushevskii","doi":"10.3103/S1068375522020053","DOIUrl":null,"url":null,"abstract":"<p>The article is devoted to studying the electrical discharge cavitation development in a liquid working medium (water, aqueous electrolytes) placed in an external magnetic field. The main stages of an electrical discharge in an aqueous medium under the influence of an external magnetic field on the discharge gap are considered. A theoretical analysis of the preconditions for the magnetic field’s influence on the development of an electrical discharge in aqueous media is implemented. The experimental data obtained using high-speed photographic recording and measuring the cavitation intensity by the iodometric method allowed the authors to propose a concept for controlling the electrical discharge cavitation processes by external magnetic fields.</p>","PeriodicalId":49315,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"58 2","pages":"158 - 166"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375522020053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1
Abstract
The article is devoted to studying the electrical discharge cavitation development in a liquid working medium (water, aqueous electrolytes) placed in an external magnetic field. The main stages of an electrical discharge in an aqueous medium under the influence of an external magnetic field on the discharge gap are considered. A theoretical analysis of the preconditions for the magnetic field’s influence on the development of an electrical discharge in aqueous media is implemented. The experimental data obtained using high-speed photographic recording and measuring the cavitation intensity by the iodometric method allowed the authors to propose a concept for controlling the electrical discharge cavitation processes by external magnetic fields.
期刊介绍:
Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.