Detección de peatones con variaciones de forma al caminar con Modelos de Forma Activa

IF 0.2 Q4 SOCIAL SCIENCES, INTERDISCIPLINARY
J. Antonio, Marcelo Romero
{"title":"Detección de peatones con variaciones de forma al caminar con Modelos de Forma Activa","authors":"J. Antonio, Marcelo Romero","doi":"10.30878/ces.v27n3a10","DOIUrl":null,"url":null,"abstract":"A pedestrian detector is provided with the algorithm models of active shape (ASM), with the stages: training (PDM) and adjustment (ASM). With PDM, 50 landmarks are marked, and gray profiles are extracted in the silhouette of each pedestrian in 137 images (pedestrian1 and pedestrian2) applying the variation modes (PCA). The contribution of this work is the adjustment and detection of a pedestrian despite the variations. At the end, the results evaluated with leave one out in each 1 080 × 720 pixels image and with the mean square error (MSE) metric, a total average of 12.7 pixels is obtained in the error distance between the original landmarks and the estimated landmarks.","PeriodicalId":41781,"journal":{"name":"Ciencia Ergo-Sum","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia Ergo-Sum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30878/ces.v27n3a10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

A pedestrian detector is provided with the algorithm models of active shape (ASM), with the stages: training (PDM) and adjustment (ASM). With PDM, 50 landmarks are marked, and gray profiles are extracted in the silhouette of each pedestrian in 137 images (pedestrian1 and pedestrian2) applying the variation modes (PCA). The contribution of this work is the adjustment and detection of a pedestrian despite the variations. At the end, the results evaluated with leave one out in each 1 080 × 720 pixels image and with the mean square error (MSE) metric, a total average of 12.7 pixels is obtained in the error distance between the original landmarks and the estimated landmarks.
在主动模式下行走时,检测形状变化的行人
为行人检测器提供了主动形状(ASM)算法模型,分为训练(PDM)和调整(ASM)两个阶段。使用PDM,标记50个地标,并在137个图像(行人专用区1和行人专用区2)中提取每个行人的轮廓中的灰色轮廓,应用变化模式(PCA)。这项工作的贡献是对行人的调整和检测,尽管存在变化。最后,在每个1080×720像素的图像中,使用均方误差(MSE)度量,在原始地标和估计地标之间的误差距离中获得12.7个像素的总平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ciencia Ergo-Sum
Ciencia Ergo-Sum SOCIAL SCIENCES, INTERDISCIPLINARY-
自引率
0.00%
发文量
24
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信