Linlin Zhao, Yuechuan Lu, Ziliu Xiong, Li Sun, J. Qi, X. Yuan, J. Peng
{"title":"Mechanical properties and nugget evolution in resistance spot welding of Zn–Al–Mg galvanized DC51D steel","authors":"Linlin Zhao, Yuechuan Lu, Ziliu Xiong, Li Sun, J. Qi, X. Yuan, J. Peng","doi":"10.1515/htmp-2022-0243","DOIUrl":null,"url":null,"abstract":"Abstract Zn–Al–Mg coating galvanized steel in resistance spot welded (RSW) in different configurations of DC51D was investigated to illustrate the nugget evolution process and mechanical properties of the joints. Results show that the microstructure of welded joints can be divided into nugget zone (FZ), heat-affected zone (HAZ), and base metal zone (BM). FZ was composed of lath martensite. The average hardness value of the weld joint was 110 HV0.2 while the FZ was up to 300 HV0.2 due to the formation of lath martensite. The failure modes can be divided into interface fracture (IF) and pull-out fracture occurred (PF) under different welding parameters, in which shear dimples showed had a typical plastic fracture morphology. The best range for welding parameters was found to be 12–18 cycles in which the nugget diameter reached 5.5 mm. The process of nugget evolution in HAZ and FZ was discussed.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0243","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Zn–Al–Mg coating galvanized steel in resistance spot welded (RSW) in different configurations of DC51D was investigated to illustrate the nugget evolution process and mechanical properties of the joints. Results show that the microstructure of welded joints can be divided into nugget zone (FZ), heat-affected zone (HAZ), and base metal zone (BM). FZ was composed of lath martensite. The average hardness value of the weld joint was 110 HV0.2 while the FZ was up to 300 HV0.2 due to the formation of lath martensite. The failure modes can be divided into interface fracture (IF) and pull-out fracture occurred (PF) under different welding parameters, in which shear dimples showed had a typical plastic fracture morphology. The best range for welding parameters was found to be 12–18 cycles in which the nugget diameter reached 5.5 mm. The process of nugget evolution in HAZ and FZ was discussed.
期刊介绍:
High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities.
Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.