Localization and snaking in axially compressed and internally pressurized thin cylindrical shells

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rainer M J Groh;Giles W Hunt
{"title":"Localization and snaking in axially compressed and internally pressurized thin cylindrical shells","authors":"Rainer M J Groh;Giles W Hunt","doi":"10.1093/imamat/hxab024","DOIUrl":null,"url":null,"abstract":"This paper uncovers new manifestations of the homoclinic snaking mechanism in the post-buckling regime of a pressurized thin cylindrical shell under axial load. These new forms tend to propagate either wholly or partially in a direction that is orthogonal to the direction of the applied load and so, unlike earlier forms in Woods & Champneys (1999, Heteroclinic tangles in the unfolding of a degenerate Hamiltonian Hopf bifurcation. Phys. D, 129, 147–170), are fundamentally 2D in nature. The main effect of internal pressurization on the snaking mechanism is firstly to transition the circumferential multiplication of buckles from a one-tier pattern to a three-tier pattern. Secondly, internal pressurization can induce oblique snaking, whereby the sequential multiplication of buckles occurs in a helical pattern across the cylinder domain. For low levels of internal pressure, the single dimple remains—as in the unpressurized case—the unstable edge state that forms the smallest energy barrier around the stable pre-buckling equilibrium. For greater levels of pressure, the edge state changes to a single dimple surrounded by four smaller dimples. By tracing the limit point that denotes the onset of these edge states in the parameter space of internal pressure and axial load, we justify and validate the empirically derived design guideline for buckling of pressurized cylinders proposed by Fung & Sechler (1957, Buckling of thin-walled circular cylinders under axial compression and internal pressure. J. Aeronaut. Sci., 24, 351–356).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://ieeexplore.ieee.org/document/9619532/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper uncovers new manifestations of the homoclinic snaking mechanism in the post-buckling regime of a pressurized thin cylindrical shell under axial load. These new forms tend to propagate either wholly or partially in a direction that is orthogonal to the direction of the applied load and so, unlike earlier forms in Woods & Champneys (1999, Heteroclinic tangles in the unfolding of a degenerate Hamiltonian Hopf bifurcation. Phys. D, 129, 147–170), are fundamentally 2D in nature. The main effect of internal pressurization on the snaking mechanism is firstly to transition the circumferential multiplication of buckles from a one-tier pattern to a three-tier pattern. Secondly, internal pressurization can induce oblique snaking, whereby the sequential multiplication of buckles occurs in a helical pattern across the cylinder domain. For low levels of internal pressure, the single dimple remains—as in the unpressurized case—the unstable edge state that forms the smallest energy barrier around the stable pre-buckling equilibrium. For greater levels of pressure, the edge state changes to a single dimple surrounded by four smaller dimples. By tracing the limit point that denotes the onset of these edge states in the parameter space of internal pressure and axial load, we justify and validate the empirically derived design guideline for buckling of pressurized cylinders proposed by Fung & Sechler (1957, Buckling of thin-walled circular cylinders under axial compression and internal pressure. J. Aeronaut. Sci., 24, 351–356).
定位和蛇形在轴向压缩和内部加压薄圆柱壳
本文揭示了在轴向载荷作用下受压薄圆柱壳后屈曲状态下同宿蛇形机制的新表现。这些新形式倾向于在与施加载荷方向正交的方向上完全或部分传播,因此,与Woods&Champneys(1999,退化哈密顿Hopf分岔展开中的异宿纠缠。Phys.D,129147-170)中的早期形式不同,本质上是2D的。内部加压对蛇形机构的主要影响首先是将带扣的周向倍增从一层模式转变为三层模式。其次,内部加压会导致斜向弯曲,从而在整个圆柱体区域内以螺旋模式依次增加扣。对于低水平的内部压力,单个凹坑仍然是不稳定的边缘状态,在稳定的预屈曲平衡周围形成最小的能垒。对于更大的压力水平,边缘状态变为由四个较小的凹坑包围的单个凹坑。通过在内压和轴向载荷的参数空间中追踪表示这些边缘状态开始的极限点,我们证明并验证了Fung&Sechler(1957,薄壁圆柱体在轴向压缩和内压下的屈曲。J.Aeronaut.Sci.,24351-356)提出的受压圆柱体屈曲的经验推导设计指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信