This article presents updated seismic hazard curves, spectra, and maps of ground motion intensity measures for the northern region of the Dominican Republic (DR) obtained using a probabilistic seismic hazard analysis (PSHA). The analysis performed uses as input data an earthquake recurrence model based on fault slip rates derived from GPS measurements published in the aftermath of the 2010 Haiti earthquake. The seismicity rate data are used to calibrate a composite characteristic earthquake model, which is combined with a Poisson process to provide a temporal characterization of earthquake occurrence. The seismic hazard curves and maps presented include parameters such as (horizontal) peak ground acceleration and pseudo-spectral response accelerations at 0.2s and 1.0s periods for 5% damping at firm rock sites. The results show that the ground motion parameters with a 2% probability of exceedance (PE) in 50 years determined in this study are up to 46% larger than the corresponding parameters specified in the current DR building code seismic hazard maps for the northern DR. Moreover, the design response spectra for a site in the city of Santiago specified in the code is significantly lower than the 2% PE in 50 years uniform hazard spectra determined in this study for vibration periods smaller than 0.5s, a range that includes the majority of the structures that define the built environment of the DR.