LATERAL VENTRICLE TEXTURE ANALYSIS IN ALZHEIMER BRAIN MR IMAGES USING KERNEL DENSITY ESTIMATION

Deboleena Saddhukhan, Amrutha Veluppal, A. K. Ramaniharan, R. Swaminathan
{"title":"LATERAL VENTRICLE TEXTURE ANALYSIS IN ALZHEIMER BRAIN MR IMAGES USING KERNEL DENSITY ESTIMATION","authors":"Deboleena Saddhukhan, Amrutha Veluppal, A. K. Ramaniharan, R. Swaminathan","doi":"10.34107/yhpn9422.04241","DOIUrl":null,"url":null,"abstract":"Alzheimer's Disease (AD) is an irreversible, progressive neurodegenerative disorder affecting a large population worldwide. Automated diagnosis of AD using Magnetic Resonance (MR) imaging-based biomarkers plays a crucial role in disease management. Compositional changes in cerebrospinal fluid due to AD might induce textural variations in Lateral Ventricles (LV) of the brain. In this work, an attempt has been made to differentiate Alzheimer's condition by quantifying the textural changes in LV using Kernel Density Estimation (KDE) technique. Reaction-Diffusion level set method is used to segment the LV from T1-weighted trans-axial brain MR images obtained from a publicly available database. Spatial KDE is used to analyze the local intensity variations within the segmented LV. The optimal kernel function and bandwidth are selected for KDE. The statistical features such as mean, median, standard deviation, variance, kurtosis, skewness and entropy, representing the distribution of KDE values within LV, are evaluated. The extracted KDE-based statistical features show significant discrimination between normal and AD subjects (p<0.01). An accuracy of 86.20% and sensitivity of 96% are obtained using SVM classifier. The results indicate that KDE seems to be a potential tool for analyzing the textural changes in brain, and thus can be clinically relevant for diagnosis of AD.","PeriodicalId":75599,"journal":{"name":"Biomedical sciences instrumentation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical sciences instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34107/yhpn9422.04241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Alzheimer's Disease (AD) is an irreversible, progressive neurodegenerative disorder affecting a large population worldwide. Automated diagnosis of AD using Magnetic Resonance (MR) imaging-based biomarkers plays a crucial role in disease management. Compositional changes in cerebrospinal fluid due to AD might induce textural variations in Lateral Ventricles (LV) of the brain. In this work, an attempt has been made to differentiate Alzheimer's condition by quantifying the textural changes in LV using Kernel Density Estimation (KDE) technique. Reaction-Diffusion level set method is used to segment the LV from T1-weighted trans-axial brain MR images obtained from a publicly available database. Spatial KDE is used to analyze the local intensity variations within the segmented LV. The optimal kernel function and bandwidth are selected for KDE. The statistical features such as mean, median, standard deviation, variance, kurtosis, skewness and entropy, representing the distribution of KDE values within LV, are evaluated. The extracted KDE-based statistical features show significant discrimination between normal and AD subjects (p<0.01). An accuracy of 86.20% and sensitivity of 96% are obtained using SVM classifier. The results indicate that KDE seems to be a potential tool for analyzing the textural changes in brain, and thus can be clinically relevant for diagnosis of AD.
基于核密度估计的阿尔茨海默病脑磁共振图像侧脑室纹理分析
阿尔茨海默病(AD)是一种影响全球大量人群的不可逆转的进行性神经退行性疾病。使用基于磁共振成像的生物标志物自动诊断AD在疾病管理中起着至关重要的作用。AD引起的脑脊液成分改变可能导致脑侧脑室(LV)的结构变化。在这项工作中,尝试通过使用核密度估计(KDE)技术量化左心室的纹理变化来区分阿尔茨海默病。使用反应扩散水平集方法从公开数据库中获得的t1加权跨轴脑MR图像中分割LV。空间KDE用于分析分割后的左心室局部强度变化。为KDE选择最优的内核函数和带宽。评估了代表KDE值在LV内分布的统计特征,如均值、中位数、标准差、方差、峰度、偏度和熵。提取的基于kde的统计特征显示正常受试者和AD受试者之间存在显著差异(p<0.01)。SVM分类器的准确率为86.20%,灵敏度为96%。结果表明,KDE似乎是分析大脑结构变化的潜在工具,因此可能与AD的临床诊断相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信