Study of the human brain potentials variability effects in P300 based brain–computer interface

IF 0.2 Q4 MEDICINE, GENERAL & INTERNAL
IP Ganin, A. Kaplan
{"title":"Study of the human brain potentials variability effects in P300 based brain–computer interface","authors":"IP Ganin, A. Kaplan","doi":"10.24075/brsmu.2022.033","DOIUrl":null,"url":null,"abstract":"The P300-based brain–computer interfaces (P300 BCI) allow the user to select commands by focusing on them. The technology involves electroencephalographic (EEG) representation of the event-related potentials (ERP) that arise in response to repetitive external stimulation. Conventional procedures for ERP extraction and analysis imply that identical stimuli produce identical responses. However, the floating onset of EEG reactions is a known neurophysiological phenomenon. A failure to account for this source of variability may considerably skew the output and undermine the overall accuracy of the interface. This study aimed to analyze the effects of ERP variability in EEG reactions in order to minimize their influence on P300 BCI command classification accuracy. Healthy subjects aged 21–22 years (n = 12) were presented with a modified P300 BCI matrix moving with specified parameters within the working area. The results strongly support the inherent significance of ERP variability in P300 BCI environments. The correction of peak latencies in single EEG reactions provided a 1.5–2 fold increase in ERP amplitude with a concomitant enhancement of classification accuracy (from 71–78% to 92–95%, p < 0.0005). These effects were particularly pronounced in attention-demanding tasks with the highest matrix velocities. The findings underscore the importance of accounting for ERP variability in advanced BCI systems.","PeriodicalId":9344,"journal":{"name":"Bulletin of Russian State Medical University","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Russian State Medical University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24075/brsmu.2022.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 2

Abstract

The P300-based brain–computer interfaces (P300 BCI) allow the user to select commands by focusing on them. The technology involves electroencephalographic (EEG) representation of the event-related potentials (ERP) that arise in response to repetitive external stimulation. Conventional procedures for ERP extraction and analysis imply that identical stimuli produce identical responses. However, the floating onset of EEG reactions is a known neurophysiological phenomenon. A failure to account for this source of variability may considerably skew the output and undermine the overall accuracy of the interface. This study aimed to analyze the effects of ERP variability in EEG reactions in order to minimize their influence on P300 BCI command classification accuracy. Healthy subjects aged 21–22 years (n = 12) were presented with a modified P300 BCI matrix moving with specified parameters within the working area. The results strongly support the inherent significance of ERP variability in P300 BCI environments. The correction of peak latencies in single EEG reactions provided a 1.5–2 fold increase in ERP amplitude with a concomitant enhancement of classification accuracy (from 71–78% to 92–95%, p < 0.0005). These effects were particularly pronounced in attention-demanding tasks with the highest matrix velocities. The findings underscore the importance of accounting for ERP variability in advanced BCI systems.
基于P300脑机接口的人脑电位变异性效应研究
基于P300的脑机接口(P300-BCI)允许用户通过专注于命令来选择命令。该技术涉及对重复外部刺激产生的事件相关电位(ERP)的脑电图(EEG)表示。ERP提取和分析的常规程序意味着相同的刺激产生相同的反应。然而,脑电反应的浮动发作是一种已知的神经生理学现象。如果不能解释这种可变性的来源,可能会大大扭曲输出并破坏接口的整体准确性。本研究旨在分析脑电反应中ERP变异性的影响,以尽量减少其对P300脑机接口命令分类准确性的影响。向年龄在21-22岁(n=12)的健康受试者展示了一个修改的P300脑机接口矩阵,该矩阵在工作区域内以特定参数移动。研究结果有力地支持了P300脑机接口环境中ERP变异性的内在意义。校正单个EEG反应中的峰值潜伏期可使ERP幅度增加1.5–2倍,同时提高分类准确率(从71–78%提高到92–95%,p<0.0005)。这些影响在矩阵速度最高、注意力要求高的任务中尤为明显。这些发现强调了在先进的脑机接口系统中考虑ERP可变性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Russian State Medical University
Bulletin of Russian State Medical University MEDICINE, GENERAL & INTERNAL-
CiteScore
0.80
自引率
0.00%
发文量
59
期刊介绍: Bulletin of Russian State Medical University (Bulletin of RSMU, ISSN Print 2500–1094, ISSN Online 2542–1204) is a peer-reviewed medical journal of Pirogov Russian National Research Medical University (Moscow, Russia). The original language of the journal is Russian (Vestnik Rossiyskogo Gosudarstvennogo Meditsinskogo Universiteta, Vestnik RGMU, ISSN Print 2070–7320, ISSN Online 2070–7339). Founded in 1994, it is issued once every two months publishing articles on clinical medicine and medical and biological sciences, first of all oncology, neurobiology, allergy and immunology, medical genetics, medical microbiology and infectious diseases. Every issue is thematic. Deadlines for manuscript submission are announced in advance. The number of publications on topics in spite of the issue topic is limited. The journal accepts only original articles submitted by their authors, including articles that present methods and techniques, clinical cases and opinions. Authors must guarantee that their work has not been previously published elsewhere in whole or in part and in other languages and is not under consideration by another scientific journal. The journal publishes only one review per issue; the review is ordered by the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信