Trajectory Control of Robotic Manipulator using Metaheuristic Algorithms

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY
Devendra Rawat, M. Gupta, Abhinav Sharma
{"title":"Trajectory Control of Robotic Manipulator using Metaheuristic Algorithms","authors":"Devendra Rawat, M. Gupta, Abhinav Sharma","doi":"10.33889/ijmems.2023.8.2.016","DOIUrl":null,"url":null,"abstract":"Robotic manipulators are extremely nonlinear complex and, uncertain systems. They have multi-input multi-output (MIMO) dynamics, which makes controlling manipulators difficult. Robotic manipulators have wide applications in many industries like processes, medicine, and space. Effective control of these manipulators is extremely important to perform these industrial tasks. Researchers are working on the control of robotic manipulators using conventional and intelligent control methods. Conventional control methods are proportional integral and derivative (PID), Fractional order proportional integral and derivative (FOPID), sliding mode control (SMC), and optimal & robust control while intelligent control method includes Artificial Neural network (ANN), Fuzzy logic control (FLC) and metaheuristic optimization algorithms based control schemes. This paper presents the trajectory control of a robotic manipulator using a PID controller. Four different meta-heuristic algorithms namely Sooty tern optimization (STO), Spotted Hyena optimizer (SHO), Atom Search optimization (ASO), and Arithmetic Optimization algorithm (AOA) are used to optimize the gains of PID controller for trajectory control of a two-link robotic manipulator and a novel hybrid sooty tern and particle swarm optimization (STOPSO) has been designed. These optimization techniques are nature-inspired algorithms that give the optimal gain values while minimizing the performance indices. A performance index comprising Integral time absolute error (ITAE) having weights for both links has been considered to achieve the desired trajectory. These optimization techniques are stochastic in nature so statistical analysis and Freidman’s ranking test has been performed to evaluate the effectiveness of these algorithms. The proposed hybrid STOPSO provided a fitness value of 0.04541 and showed a standard deviation of 0.0002. A comparative study of these optimization techniques is presented and as a result, hybrid STOPSO provides the best results with minimum fitness value followed by STO, AOA, ASO, and SHO algorithms.","PeriodicalId":44185,"journal":{"name":"International Journal of Mathematical Engineering and Management Sciences","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Engineering and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33889/ijmems.2023.8.2.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Robotic manipulators are extremely nonlinear complex and, uncertain systems. They have multi-input multi-output (MIMO) dynamics, which makes controlling manipulators difficult. Robotic manipulators have wide applications in many industries like processes, medicine, and space. Effective control of these manipulators is extremely important to perform these industrial tasks. Researchers are working on the control of robotic manipulators using conventional and intelligent control methods. Conventional control methods are proportional integral and derivative (PID), Fractional order proportional integral and derivative (FOPID), sliding mode control (SMC), and optimal & robust control while intelligent control method includes Artificial Neural network (ANN), Fuzzy logic control (FLC) and metaheuristic optimization algorithms based control schemes. This paper presents the trajectory control of a robotic manipulator using a PID controller. Four different meta-heuristic algorithms namely Sooty tern optimization (STO), Spotted Hyena optimizer (SHO), Atom Search optimization (ASO), and Arithmetic Optimization algorithm (AOA) are used to optimize the gains of PID controller for trajectory control of a two-link robotic manipulator and a novel hybrid sooty tern and particle swarm optimization (STOPSO) has been designed. These optimization techniques are nature-inspired algorithms that give the optimal gain values while minimizing the performance indices. A performance index comprising Integral time absolute error (ITAE) having weights for both links has been considered to achieve the desired trajectory. These optimization techniques are stochastic in nature so statistical analysis and Freidman’s ranking test has been performed to evaluate the effectiveness of these algorithms. The proposed hybrid STOPSO provided a fitness value of 0.04541 and showed a standard deviation of 0.0002. A comparative study of these optimization techniques is presented and as a result, hybrid STOPSO provides the best results with minimum fitness value followed by STO, AOA, ASO, and SHO algorithms.
基于元启发式算法的机器人轨迹控制
机器人是一个极其非线性、复杂且不确定的系统。它们具有多输入多输出(MIMO)动力学,这使得控制机械手变得困难。机器人在许多行业有着广泛的应用,如工艺、医学和太空。对这些机械手的有效控制对于执行这些工业任务极其重要。研究人员正在使用传统和智能控制方法对机器人进行控制。传统的控制方法有比例积分和微分(PID)、分数阶比例积分和导数(FOPID)、滑模控制(SMC)和最优鲁棒控制,而智能控制方法包括基于人工神经网络(ANN)、模糊逻辑控制(FLC)和元启发式优化算法的控制方案。本文介绍了一种采用PID控制器的机械手轨迹控制方法。采用四种不同的元启发式算法,即煤烟优化算法(STO)、斑点海纳优化算法(SHO)、原子搜索优化算法(ASO)和算术优化算法(AOA),对双连杆机械手轨迹控制PID控制器的增益进行了优化,并设计了一种新的混合煤烟与粒子群优化算法(STOPSO)。这些优化技术是受自然启发的算法,在最小化性能指标的同时给出最佳增益值。已经考虑了包括具有两个链路的权重的积分时间绝对误差(ITAE)的性能指数来实现期望的轨迹。这些优化技术本质上是随机的,因此已经进行了统计分析和Freidman排名测试来评估这些算法的有效性。所提出的混合STOPSO提供了0.04541的适应度值,并且显示出0.0002的标准偏差。对这些优化技术进行了比较研究,结果表明,混合STOPSO提供了最小适应度值的最佳结果,其次是STO、AOA、ASO和SHO算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
6.20%
发文量
57
审稿时长
20 weeks
期刊介绍: IJMEMS is a peer reviewed international journal aiming on both the theoretical and practical aspects of mathematical, engineering and management sciences. The original, not-previously published, research manuscripts on topics such as the following (but not limited to) will be considered for publication: *Mathematical Sciences- applied mathematics and allied fields, operations research, mathematical statistics. *Engineering Sciences- computer science engineering, mechanical engineering, information technology engineering, civil engineering, aeronautical engineering, industrial engineering, systems engineering, reliability engineering, production engineering. *Management Sciences- engineering management, risk management, business models, supply chain management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信