A sparse optical flow inspired method for 3D velocimetry

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
George Lu, Adam Steinberg, Masayuki Yano
{"title":"A sparse optical flow inspired method for 3D velocimetry","authors":"George Lu,&nbsp;Adam Steinberg,&nbsp;Masayuki Yano","doi":"10.1007/s00348-023-03593-z","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a three-dimensional three-component particle-based velocimetry method that expands the methodology of optical flow to three dimensions. The proposed scheme, sparse particle flow velocimetry (SPFV), uses a sparse representation of intensity fields with kernel functions to facilitate efficient computation in 3D. In addition, to provide robust performance for the large particle displacements seen in images, the sparse representation is combined with a multi-resolution optimization scheme based on an energy functional derived from the displaced frame difference equation; however, this formulation is not reliant on linearized coarse-to-fine warping schemes to enable estimations of large displacements at the cost of potentially freezing large scale velocity features. Performance of SPFV is evaluated in terms of accuracy and spatial resolution, using synthetic particle images from a direct numerical simulation of isotropic turbulence. SPFV yields lower errors than tomographic PIV (T-PIV) and is capable of resolving finer scale features, even for large particle displacements and in the presence of artificial tomographic reconstruction artifacts. The method is also validated on experimental images of reacting flows and shows good agreement with T-PIV results.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"64 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-023-03593-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-023-03593-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a three-dimensional three-component particle-based velocimetry method that expands the methodology of optical flow to three dimensions. The proposed scheme, sparse particle flow velocimetry (SPFV), uses a sparse representation of intensity fields with kernel functions to facilitate efficient computation in 3D. In addition, to provide robust performance for the large particle displacements seen in images, the sparse representation is combined with a multi-resolution optimization scheme based on an energy functional derived from the displaced frame difference equation; however, this formulation is not reliant on linearized coarse-to-fine warping schemes to enable estimations of large displacements at the cost of potentially freezing large scale velocity features. Performance of SPFV is evaluated in terms of accuracy and spatial resolution, using synthetic particle images from a direct numerical simulation of isotropic turbulence. SPFV yields lower errors than tomographic PIV (T-PIV) and is capable of resolving finer scale features, even for large particle displacements and in the presence of artificial tomographic reconstruction artifacts. The method is also validated on experimental images of reacting flows and shows good agreement with T-PIV results.

一种稀疏光流启发的三维测速方法
我们介绍了一种三维三分量粒子测速方法,将光流方法扩展到三维空间。本文提出的稀疏粒子流测速(SPFV)方案,利用带核函数的强度场的稀疏表示来提高三维计算效率。此外,为了对图像中出现的大颗粒位移提供鲁棒性,将稀疏表示与基于位移帧差分方程导出的能量泛函的多分辨率优化方案相结合;然而,该公式不依赖于线性化的粗到细的翘曲方案,以潜在冻结大尺度速度特征为代价来估计大位移。SPFV的性能在精度和空间分辨率方面进行了评估,使用了来自各向同性湍流直接数值模拟的合成粒子图像。SPFV比层析PIV (T-PIV)产生更低的误差,并且能够分辨更精细的尺度特征,即使是在大颗粒位移和人工层析重建工件存在的情况下。在反应流的实验图像上对该方法进行了验证,结果与T-PIV结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信