Laura C Zambrano-Jerez, Karen D Díaz-Santamaría, María A Rodríguez-Santos, Diego F Alarcón-Ariza, Genny L Meléndez-Flórez, Mónica A Ramírez-Blanco
{"title":"Dye-Perfused Human Placenta for Simulation in a Microsurgery Laboratory for Plastic Surgeons.","authors":"Laura C Zambrano-Jerez, Karen D Díaz-Santamaría, María A Rodríguez-Santos, Diego F Alarcón-Ariza, Genny L Meléndez-Flórez, Mónica A Ramírez-Blanco","doi":"10.1055/a-2113-4182","DOIUrl":null,"url":null,"abstract":"<p><p>In recent decades, a number of simulation models for microsurgical training have been published. The human placenta has received extensive validation in microneurosurgery and is a useful instrument to facilitate learning in microvascular repair techniques as an alternative to using live animals. This study uses a straightforward, step-by-step procedure for instructing the creation of simulators with dynamic flow to characterize the placental vascular tree and assess its relevance for plastic surgery departments. Measurements of the placental vasculature and morphological characterization of 18 placentas were made. After the model was used in a basic microsurgery training laboratory session, a survey was given to nine plastic surgery residents, two microsurgeons, and one hand surgeon. In all divisions, venous diameters were larger than arterial diameters, with minimum diameters of 0.8 and 0.6 mm, respectively. The majority of the participants considered that the model faithfully reproduces a real microsurgical scenario; the consistency of the vessels and their dissection are similar in in vivo tissue. Furthermore, all the participants considered that this model could improve their surgical technique and would propose it for microsurgical training. As some of the model's disadvantages, an abundantly thick adventitia, a thin tunica media, and higher adherence to the underlying tissue were identified. The color-perfused placenta is an excellent tool for microsurgical training in plastic surgery. It can faithfully reproduce a microsurgical scenario, offering an abundance of vasculature with varying sizes similar to tissue in vivo, enhancing technical proficiency, and lowering patient error.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"627-634"},"PeriodicalIF":16.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10736195/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2113-4182","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, a number of simulation models for microsurgical training have been published. The human placenta has received extensive validation in microneurosurgery and is a useful instrument to facilitate learning in microvascular repair techniques as an alternative to using live animals. This study uses a straightforward, step-by-step procedure for instructing the creation of simulators with dynamic flow to characterize the placental vascular tree and assess its relevance for plastic surgery departments. Measurements of the placental vasculature and morphological characterization of 18 placentas were made. After the model was used in a basic microsurgery training laboratory session, a survey was given to nine plastic surgery residents, two microsurgeons, and one hand surgeon. In all divisions, venous diameters were larger than arterial diameters, with minimum diameters of 0.8 and 0.6 mm, respectively. The majority of the participants considered that the model faithfully reproduces a real microsurgical scenario; the consistency of the vessels and their dissection are similar in in vivo tissue. Furthermore, all the participants considered that this model could improve their surgical technique and would propose it for microsurgical training. As some of the model's disadvantages, an abundantly thick adventitia, a thin tunica media, and higher adherence to the underlying tissue were identified. The color-perfused placenta is an excellent tool for microsurgical training in plastic surgery. It can faithfully reproduce a microsurgical scenario, offering an abundance of vasculature with varying sizes similar to tissue in vivo, enhancing technical proficiency, and lowering patient error.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.