Self-Dual Maps III: Projective Links

IF 0.3 4区 数学 Q4 MATHEMATICS
L. Montejano, J. R. Ramirez Alfonsin, Iván Rasskin
{"title":"Self-Dual Maps III: Projective Links","authors":"L. Montejano, J. R. Ramirez Alfonsin, Iván Rasskin","doi":"10.1142/s0218216523500669","DOIUrl":null,"url":null,"abstract":"In this paper, we present necessary and sufficient combinatorial conditions for a link to be projective, that is, a link in $RP^3$. This characterization is closely related to the notions of antipodally self-dual and antipodally symmetric maps. We also discuss the notion of symmetric cycle, an interesting issue arising in projective links leading us to an easy condition to prevent a projective link to be alternating.","PeriodicalId":54790,"journal":{"name":"Journal of Knot Theory and Its Ramifications","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Knot Theory and Its Ramifications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218216523500669","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present necessary and sufficient combinatorial conditions for a link to be projective, that is, a link in $RP^3$. This characterization is closely related to the notions of antipodally self-dual and antipodally symmetric maps. We also discuss the notion of symmetric cycle, an interesting issue arising in projective links leading us to an easy condition to prevent a projective link to be alternating.
自对偶映射III:投射链接
本文给出了链接是射影的充要组合条件,即$RP^3$中的链接。这种表征与反足自对偶和反足对称映射的概念密切相关。我们还讨论了对称环的概念,这是投影链接中出现的一个有趣的问题,使我们得到了一个简单的条件来防止投影链接是交替的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
40.00%
发文量
127
审稿时长
4-8 weeks
期刊介绍: This Journal is intended as a forum for new developments in knot theory, particularly developments that create connections between knot theory and other aspects of mathematics and natural science. Our stance is interdisciplinary due to the nature of the subject. Knot theory as a core mathematical discipline is subject to many forms of generalization (virtual knots and links, higher-dimensional knots, knots and links in other manifolds, non-spherical knots, recursive systems analogous to knotting). Knots live in a wider mathematical framework (classification of three and higher dimensional manifolds, statistical mechanics and quantum theory, quantum groups, combinatorics of Gauss codes, combinatorics, algorithms and computational complexity, category theory and categorification of topological and algebraic structures, algebraic topology, topological quantum field theories). Papers that will be published include: -new research in the theory of knots and links, and their applications; -new research in related fields; -tutorial and review papers. With this Journal, we hope to serve well researchers in knot theory and related areas of topology, researchers using knot theory in their work, and scientists interested in becoming informed about current work in the theory of knots and its ramifications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信