Modulus in Banach function spaces

Pub Date : 2017-09-01 DOI:10.4310/ARKIV.2017.V55.N1.A5
V. Exnerov'a, J. Malý, O. Martio
{"title":"Modulus in Banach function spaces","authors":"V. Exnerov'a, J. Malý, O. Martio","doi":"10.4310/ARKIV.2017.V55.N1.A5","DOIUrl":null,"url":null,"abstract":"Moduli of path families are widely used to mark curves which may be neglected for some applications. We introduce ordinary and approximation modulus with respect to Banach function spaces. While these moduli lead to the same result in reflexive spaces, we show that there are important path families (like paths tangent to a given set) which can be labeled as negligible by the approximation modulus with respect to the Lorentz Lp,1-space for an appropriate p, in particular, to the ordinary L1-space if p=1, but not by the ordinary modulus with respect to the same space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ARKIV.2017.V55.N1.A5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Moduli of path families are widely used to mark curves which may be neglected for some applications. We introduce ordinary and approximation modulus with respect to Banach function spaces. While these moduli lead to the same result in reflexive spaces, we show that there are important path families (like paths tangent to a given set) which can be labeled as negligible by the approximation modulus with respect to the Lorentz Lp,1-space for an appropriate p, in particular, to the ordinary L1-space if p=1, but not by the ordinary modulus with respect to the same space.
分享
查看原文
Banach函数空间中的模
路径族的模量被广泛用于标记曲线,在某些应用中可能被忽略。我们引入了Banach函数空间的普通模和近似模。虽然这些模量在自反空间中导致相同的结果,但我们表明存在重要的路径族(如与给定集合相切的路径),它们可以通过相对于适当p的洛伦兹Lp - 1空间的近似模量标记为可忽略,特别是如果p=1,则可以标记为普通的l - 1空间,但不能通过相对于相同空间的普通模量标记为可忽略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信