Mark A Tapper, Jeffrey S Denny, Barbara R Sheedy, Ben Johnson, Richard C Kolanczyk
{"title":"Estrogenic Activity of Perfluoro Carboxylic and Sulfonic Acids in Rainbow Trout Estrogen Receptor Binding and Liver Slice Vtg mRNA Expression Assays.","authors":"Mark A Tapper, Jeffrey S Denny, Barbara R Sheedy, Ben Johnson, Richard C Kolanczyk","doi":"10.1089/aivt.2022.0013","DOIUrl":null,"url":null,"abstract":"<p><p>Perfluoroalkylated substances (PFAS) such as carboxylic acids, and sulfonic acids were manufactured in high quantities and are ubiquitous environmental contaminants. These chemicals persist in the environment and tend to bioaccumulate. In the current study, the estrogenic potential of a series of perfluoro carboxylic acids and select perfluoro sulfonic acids were assessed in an <i>in vitro</i> rainbow trout estrogen receptor (rtER) binding assay and an <i>ex vivo</i> rtER dependent vitellogenin (Vtg) expression rainbow trout liver slice assay. Perfluoro carboxylic acids with perfluoroalkyl chain lengths of four to six did not significantly bind to the rtER or induce Vtg expression in liver slices. Perfluoro carboxylic acids with chain lengths of seven to ten, and sulfonic acids with seven and eight carbon chains bound to the rtER, but with low relative binding affinities. While affinity for the rtER increased with increasing chain length the highest affinity measured was only 0.0025% relative to the endogenous hormone 17ß-estradiol at 100%. Both the eight-carbon carboxylic acid and eight-carbon sulfonic acid induced Vtg expression in ex vivo liver slices. However, toxicity did not allow expression to achieve maximum efficacy relative to estradiol.</p>","PeriodicalId":37448,"journal":{"name":"Applied In Vitro Toxicology","volume":" ","pages":"13-22"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11151740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied In Vitro Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/aivt.2022.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluoroalkylated substances (PFAS) such as carboxylic acids, and sulfonic acids were manufactured in high quantities and are ubiquitous environmental contaminants. These chemicals persist in the environment and tend to bioaccumulate. In the current study, the estrogenic potential of a series of perfluoro carboxylic acids and select perfluoro sulfonic acids were assessed in an in vitro rainbow trout estrogen receptor (rtER) binding assay and an ex vivo rtER dependent vitellogenin (Vtg) expression rainbow trout liver slice assay. Perfluoro carboxylic acids with perfluoroalkyl chain lengths of four to six did not significantly bind to the rtER or induce Vtg expression in liver slices. Perfluoro carboxylic acids with chain lengths of seven to ten, and sulfonic acids with seven and eight carbon chains bound to the rtER, but with low relative binding affinities. While affinity for the rtER increased with increasing chain length the highest affinity measured was only 0.0025% relative to the endogenous hormone 17ß-estradiol at 100%. Both the eight-carbon carboxylic acid and eight-carbon sulfonic acid induced Vtg expression in ex vivo liver slices. However, toxicity did not allow expression to achieve maximum efficacy relative to estradiol.
期刊介绍:
Applied In Vitro Toxicology is a peer-reviewed journal providing the latest research on the application of alternative in vitro testing methods for predicting adverse effects in the pharmaceutical, chemical, and personal care industries. This Journal aims to address important issues facing the various chemical industries, including regulatory requirements; the reduction, refinement, and replacement of animal testing; new screening methods; evaluation of new cell and tissue models; and the most appropriate methods for assessing safety and satisfying regulatory demands. The Journal also delivers the latest views and opinions of developers of new models, end users of the models, academic laboratories that are inventing new tools, and regulatory agencies in the United States, Europe, Latin America, Australia and Asia. Applied In Vitro Toxicology is the journal that scientists involved with hazard identification and risk assessment will read to understand how new and existing in vitro methods are applied, and the questions for which these models provide answers. Applied In Vitro Toxicology coverage includes: -Applied in vitro toxicology industry standards -New technologies developed for applied in vitro toxicology -Data acquisition, cleaning, distribution, and best practices -Data protection, privacy, and policy -Business interests from research to product -The changing role of in vitro toxicology -Visualization and design principles of applied in vitro toxicology infrastructures -Physical interfaces and robotics -Opportunities around applied in vitro toxicology