Predicting CEFR levels in learners of English: The use of microsystem criterial features in a machine learning approach

IF 4.6 1区 文学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Recall Pub Date : 2021-11-10 DOI:10.1017/S095834402100029X
Thomas Gaillat, A. Simpkin, Nicolas Ballier, Bernardo Stearns, Annanda Sousa, Manon Bouyé, Manel Zarrouk
{"title":"Predicting CEFR levels in learners of English: The use of microsystem criterial features in a machine learning approach","authors":"Thomas Gaillat, A. Simpkin, Nicolas Ballier, Bernardo Stearns, Annanda Sousa, Manon Bouyé, Manel Zarrouk","doi":"10.1017/S095834402100029X","DOIUrl":null,"url":null,"abstract":"Abstract This paper focuses on automatically assessing language proficiency levels according to linguistic complexity in learner English. We implement a supervised learning approach as part of an automatic essay scoring system. The objective is to uncover Common European Framework of Reference for Languages (CEFR) criterial features in writings by learners of English as a foreign language. Our method relies on the concept of microsystems with features related to learner-specific linguistic systems in which several forms operate paradigmatically. Results on internal data show that different microsystems help classify writings from A1 to C2 levels (82% balanced accuracy). Overall results on external data show that a combination of lexical, syntactic, cohesive and accuracy features yields the most efficient classification across several corpora (59.2% balanced accuracy).","PeriodicalId":47046,"journal":{"name":"Recall","volume":"34 1","pages":"130 - 146"},"PeriodicalIF":4.6000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recall","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1017/S095834402100029X","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract This paper focuses on automatically assessing language proficiency levels according to linguistic complexity in learner English. We implement a supervised learning approach as part of an automatic essay scoring system. The objective is to uncover Common European Framework of Reference for Languages (CEFR) criterial features in writings by learners of English as a foreign language. Our method relies on the concept of microsystems with features related to learner-specific linguistic systems in which several forms operate paradigmatically. Results on internal data show that different microsystems help classify writings from A1 to C2 levels (82% balanced accuracy). Overall results on external data show that a combination of lexical, syntactic, cohesive and accuracy features yields the most efficient classification across several corpora (59.2% balanced accuracy).
预测英语学习者的CEFR水平:在机器学习方法中使用微系统标准特征
摘要本文着重于根据英语学习者的语言复杂性自动评估语言能力水平。我们实现了一种监督学习的方法,作为自动作文评分系统的一部分。目的是揭示英语学习者写作中的共同欧洲语言参考框架(CEFR)标准特征。我们的方法依赖于微系统的概念,该概念具有与特定于学习者的语言系统相关的特征,在该系统中,几种形式进行了语法操作。内部数据的结果显示,不同的微系统有助于将文章从A1级分类到C2级(82%的平衡准确率)。外部数据的总体结果表明,词汇、句法、衔接和准确性特征的组合在几个语料库中产生了最有效的分类(59.2%的平衡准确性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Recall
Recall Multiple-
CiteScore
8.50
自引率
4.40%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信