Gangjin Chen, Jianfeng Zhang, Xiaoyan Shi, Huili Peng, Xi Chen
{"title":"Charge trapped mechanism for semi-crystalline polymer electrets: quasi-dipole model","authors":"Gangjin Chen, Jianfeng Zhang, Xiaoyan Shi, Huili Peng, Xi Chen","doi":"10.1049/iet-nde.2020.0003","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Polymer electrets are increasingly getting application in a very wide range. However, its charge trapped mechanism is still poorly understood. It is always challenging how to improve its charge trapped ability and to enhance its performance stability. In this study, a charge trapped mechanism, quasi-dipole model, is proposed for semi-crystalline polymer electrets. Every grain of crystallite is viewed as a dipole based on the polarisation effect between crystalline and amorphous region when charged. The energy level of the charge trap has a dependence on the crystallite structure. The more regular the crystallite grain structure the better charge stability is. The melt-blown polypropylene (MBPP) electret fabrics with α or mesomorphic crystallite are used as the model material to verify the rationality of the mechanism. The experiment results from thermally stimulating discharge and X-ray diffraction proved that the charge-trapped stability could be improved by means of transformation from meso-crystalline to α crystalline structure. The MBPP fabric containing α-crystallite shows much better charge trapped performance than one containing mesomorphic-crystallite because of more regular structure in α crystallite. The findings not only present new insight into charge-trapped phenomena in polymer electrets, but also provide innovation for the processing technology of polymer electret materials.</p>\n </div>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/iet-nde.2020.0003","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-nde.2020.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 6
Abstract
Polymer electrets are increasingly getting application in a very wide range. However, its charge trapped mechanism is still poorly understood. It is always challenging how to improve its charge trapped ability and to enhance its performance stability. In this study, a charge trapped mechanism, quasi-dipole model, is proposed for semi-crystalline polymer electrets. Every grain of crystallite is viewed as a dipole based on the polarisation effect between crystalline and amorphous region when charged. The energy level of the charge trap has a dependence on the crystallite structure. The more regular the crystallite grain structure the better charge stability is. The melt-blown polypropylene (MBPP) electret fabrics with α or mesomorphic crystallite are used as the model material to verify the rationality of the mechanism. The experiment results from thermally stimulating discharge and X-ray diffraction proved that the charge-trapped stability could be improved by means of transformation from meso-crystalline to α crystalline structure. The MBPP fabric containing α-crystallite shows much better charge trapped performance than one containing mesomorphic-crystallite because of more regular structure in α crystallite. The findings not only present new insight into charge-trapped phenomena in polymer electrets, but also provide innovation for the processing technology of polymer electret materials.