Cohomogeneity one central Kähler metrics in dimension four

IF 0.5 4区 数学 Q3 MATHEMATICS
Thalia D. Jeffres, G. Maschler, Robert Ream
{"title":"Cohomogeneity one central Kähler metrics in dimension four","authors":"Thalia D. Jeffres, G. Maschler, Robert Ream","doi":"10.1515/advgeom-2023-0011","DOIUrl":null,"url":null,"abstract":"Abstract A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"23 1","pages":"323 - 344"},"PeriodicalIF":0.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract A Kähler metric is called central if the determinant of its Ricci endomorphism is constant; see [12]. For the case in which this constant is zero, we study on 4-manifolds the existence of complete metrics of this type which have cohomogeneity one for three unimodular 3-dimensional Lie groups: SU(2), the group E(2) of Euclidean plane motions, and a quotient by a discrete subgroup of the Heisenberg group nil3. We obtain a complete classification for SU(2), and some existence results for the other two groups, in terms of specific solutions of an associated ODE system.
四维上的一个中心Kähler度量的共同源性
摘要如果Kähler度量的Ricci自同态的行列式是常数,则称其为中心度量;参见[12]。对于这个常数为零的情况,我们在4-流形上研究了这类完全度量的存在性,这些度量对于三个单模三维李群具有上同根性1:SU(2),欧几里得平面运动的群E(2)和海森堡群nil3的离散子群的商。根据相关ODE系统的具体解,我们得到了SU(2)的一个完整分类,以及其他两组的一些存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信