U. Skadiņš, Kristens Kuļevskis, Andris Vulāns, R. Brencis
{"title":"Thin-Layer Fibre-Reinforced Concrete Sandwich Walls: Numerical Evaluation","authors":"U. Skadiņš, Kristens Kuļevskis, Andris Vulāns, R. Brencis","doi":"10.3390/fib11020019","DOIUrl":null,"url":null,"abstract":"In this study, structural thin-layer sandwich walls (SWs) made of steel-fibre-reinforced concrete (SFRC) without conventional reinforcements were investigated. Other researchers have shown that SWs with thin wythes can be used as load bearing structures in low-rise buildings, thereby reducing the amount of concrete by 2–5 times if compared to conventional reinforced-concrete SWs. In most studies, relatively warm climatic regions are the focus, and thin-layer SWs with shear connectors to obtain a certain level of composite action are investigated. In almost no studies has sound insulation been evaluated. In this study, a numerical investigation of structural, thermal and sound insulation performances was carried out. The load-bearing capacities of composite and non-composite SWs are compared. Regions with the lowest five-day mean air temperature of −20 ∘C were considered. The characteristics of the SW are compared to the requirements given in relevant European and Latvian standards. The minimum thermal insulation for family houses varies from 120 mm to 200 mm, depending on the material. To ensure sufficient sound insulation, the average thickness of the concrete wythes should be around 60 mm, preferably with a 15 mm difference between them. Structural analysis of the proposed wall panel was performed using non-linear finite element analysis software ATENA Science. The obtained load-bearing capacity exceeded the design loads of a single-story family house by around 100 times, regardless of the degree of composite action.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, structural thin-layer sandwich walls (SWs) made of steel-fibre-reinforced concrete (SFRC) without conventional reinforcements were investigated. Other researchers have shown that SWs with thin wythes can be used as load bearing structures in low-rise buildings, thereby reducing the amount of concrete by 2–5 times if compared to conventional reinforced-concrete SWs. In most studies, relatively warm climatic regions are the focus, and thin-layer SWs with shear connectors to obtain a certain level of composite action are investigated. In almost no studies has sound insulation been evaluated. In this study, a numerical investigation of structural, thermal and sound insulation performances was carried out. The load-bearing capacities of composite and non-composite SWs are compared. Regions with the lowest five-day mean air temperature of −20 ∘C were considered. The characteristics of the SW are compared to the requirements given in relevant European and Latvian standards. The minimum thermal insulation for family houses varies from 120 mm to 200 mm, depending on the material. To ensure sufficient sound insulation, the average thickness of the concrete wythes should be around 60 mm, preferably with a 15 mm difference between them. Structural analysis of the proposed wall panel was performed using non-linear finite element analysis software ATENA Science. The obtained load-bearing capacity exceeded the design loads of a single-story family house by around 100 times, regardless of the degree of composite action.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins