{"title":"Strategically designing layered two-dimensional SnS2-based hybrid electrodes: A futuristic option for low-cost supercapacitors","authors":"Susmi Anna Thomas , Jayesh Cherusseri","doi":"10.1016/j.jechem.2023.06.037","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors are promising energy storage devices in current century due to their high specific capacitance, cyclic stability, high power density, and high voltage rating. Due to their excellent electrochemical properties, supercapacitors are invariably used in a multitude of applications ranging from portable electronics to electric vehicles. The electrochemical performance of a supercapacitor mainly depends on the type of electrode-active material used in it. Thereby a careful selection is mandatory to achieve the excellency. Nanostructured electrode-active materials such as carbon nanomaterials, transition metal oxides, transition metal dichalcogenides (TMDs), electronically conducting polymers, etc. are invariably used for supercapacitor application. Among these, TMDs have received great interest, particularly transition metal disulfides such as molybdenum disulfide, tin disulfide (SnS<sub>2</sub>), etc. Tin is abundant on the earth with excellent charge storage capabilities, attracted great scientific interest for application as electrode materials in supercapacitors. Good electronic conductivity, long cycling life and low-cost are its added advantages. Herein, we discuss the recent trends in layered two-dimensional (2D) SnS<sub>2</sub>-based electrodes to develop low-cost supercapacitors. Initially, their crystal structure, basic properties, synthesis methods are discussed. Further, strategically designing electrode nanostructures to achieve excellent electrochemical performance is reviewed then after. This includes material design in terms of morphology, pore-size, and shape as well as preparation of 2D SnS<sub>2</sub>-based nanocomposite electrodes. Furthermore, the challenges and future perspectives of 2D SnS<sub>2</sub>-based supercapacitors are included.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"85 ","pages":"Pages 394-417"},"PeriodicalIF":13.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623003881","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
Supercapacitors are promising energy storage devices in current century due to their high specific capacitance, cyclic stability, high power density, and high voltage rating. Due to their excellent electrochemical properties, supercapacitors are invariably used in a multitude of applications ranging from portable electronics to electric vehicles. The electrochemical performance of a supercapacitor mainly depends on the type of electrode-active material used in it. Thereby a careful selection is mandatory to achieve the excellency. Nanostructured electrode-active materials such as carbon nanomaterials, transition metal oxides, transition metal dichalcogenides (TMDs), electronically conducting polymers, etc. are invariably used for supercapacitor application. Among these, TMDs have received great interest, particularly transition metal disulfides such as molybdenum disulfide, tin disulfide (SnS2), etc. Tin is abundant on the earth with excellent charge storage capabilities, attracted great scientific interest for application as electrode materials in supercapacitors. Good electronic conductivity, long cycling life and low-cost are its added advantages. Herein, we discuss the recent trends in layered two-dimensional (2D) SnS2-based electrodes to develop low-cost supercapacitors. Initially, their crystal structure, basic properties, synthesis methods are discussed. Further, strategically designing electrode nanostructures to achieve excellent electrochemical performance is reviewed then after. This includes material design in terms of morphology, pore-size, and shape as well as preparation of 2D SnS2-based nanocomposite electrodes. Furthermore, the challenges and future perspectives of 2D SnS2-based supercapacitors are included.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy