Numerical study of geyser events in rainstorm systems at different scales

IF 3.7 Q1 WATER RESOURCES
Shuang-qing Zhang , Jia-chun Liu , Biao Huang , Jian Zhang
{"title":"Numerical study of geyser events in rainstorm systems at different scales","authors":"Shuang-qing Zhang ,&nbsp;Jia-chun Liu ,&nbsp;Biao Huang ,&nbsp;Jian Zhang","doi":"10.1016/j.wse.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>Considering that we still do not fully understand the behavior of air pockets trapped in rainstorm systems and water flow changes inside pipes, the study of actual geysers presents many challenges. In this study, three-dimensional numerical models were developed to investigate the mechanisms of geyser events triggered by rapid filling flows at different scales. The results showed that, in the first stage of the water–air mixture of the prototype model, a large amount of air was released quickly, and the subsequent overflow lasted for a more extended period. The transport capacity of the downstream pipe, as a critical factor, significantly influenced the water–air interaction of the geyser. Restricting the outlet area and increasing the outlet pressure simultaneously resulted in a stronger geyser. The equivalent density of the water–air mixture increased as the scale decreased during the geyser event.</p></div>","PeriodicalId":23628,"journal":{"name":"Water science and engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674237023000649/pdfft?md5=5feb934feab402c00ac8d674bd7d9838&pid=1-s2.0-S1674237023000649-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water science and engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674237023000649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Considering that we still do not fully understand the behavior of air pockets trapped in rainstorm systems and water flow changes inside pipes, the study of actual geysers presents many challenges. In this study, three-dimensional numerical models were developed to investigate the mechanisms of geyser events triggered by rapid filling flows at different scales. The results showed that, in the first stage of the water–air mixture of the prototype model, a large amount of air was released quickly, and the subsequent overflow lasted for a more extended period. The transport capacity of the downstream pipe, as a critical factor, significantly influenced the water–air interaction of the geyser. Restricting the outlet area and increasing the outlet pressure simultaneously resulted in a stronger geyser. The equivalent density of the water–air mixture increased as the scale decreased during the geyser event.

不同尺度暴雨系统间歇泉事件的数值研究
考虑到我们仍然没有完全了解暴雨系统中被困的气穴的行为和管道内水流的变化,对实际间歇泉的研究提出了许多挑战。本文建立了三维数值模型,探讨了不同尺度下快速充填流触发间歇泉事件的机理。结果表明:在原型模型的水-空气混合气第一阶段,大量空气快速释放,后续溢流持续时间较长;下游管道的输送能力是影响间歇泉水气相互作用的关键因素。限制出气口面积和增加出气口压力的同时,间歇泉强度增大。在间歇泉事件中,水气混合物的等效密度随着尺度的减小而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
5.00%
发文量
573
审稿时长
50 weeks
期刊介绍: Water Science and Engineering journal is an international, peer-reviewed research publication covering new concepts, theories, methods, and techniques related to water issues. The journal aims to publish research that helps advance the theoretical and practical understanding of water resources, aquatic environment, aquatic ecology, and water engineering, with emphases placed on the innovation and applicability of science and technology in large-scale hydropower project construction, large river and lake regulation, inter-basin water transfer, hydroelectric energy development, ecological restoration, the development of new materials, and sustainable utilization of water resources.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信