Automated detection of cybersecurity attacks in healthcare systems with recursive feature elimination and multilayer perceptron optimization

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Ilhan Firat Kilincer , Fatih Ertam , Abdulkadir Sengur , Ru-San Tan , U. Rajendra Acharya
{"title":"Automated detection of cybersecurity attacks in healthcare systems with recursive feature elimination and multilayer perceptron optimization","authors":"Ilhan Firat Kilincer ,&nbsp;Fatih Ertam ,&nbsp;Abdulkadir Sengur ,&nbsp;Ru-San Tan ,&nbsp;U. Rajendra Acharya","doi":"10.1016/j.bbe.2022.11.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Widespread proliferation of interconnected healthcare equipment, accompanying software, operating systems, and networks in the Internet of Medical Things (IoMT) raises the risk of security compromise as the bulk of IoMT devices are not built to withstand internet attacks. In this work, we have developed a cyber-attack and anomaly detection model based on recursive feature elimination (RFE) and multilayer </span>perceptron<span> (MLP). The RFE approach selected optimal features using logistic regression<span> (LR) and extreme gradient boosting regression (XGBRegressor) kernel functions. MLP parameters were adjusted by using a hyperparameter optimization and 10-fold cross-validation approach was performed for performance evaluations. The developed model was performed on various IoMT cybersecurity datasets, and attained the best accuracy rates of 99.99%, 99.94%, 98.12%, and 96.2%, using Edith Cowan University- Internet of Health Things (ECU-IoHT), Intensive Care Unit (ICU Dataset), Telemetry data, Operating systems’ data, and Network data from the testbed IoT/IIoT network (TON-IoT), and Washington University in St. Louis enhanced healthcare monitoring system (WUSTL-EHMS) datasets, respectively. The proposed method has the ability to counter cyber attacks in healthcare applications.</span></span></p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"43 1","pages":"Pages 30-41"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521622001012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 11

Abstract

Widespread proliferation of interconnected healthcare equipment, accompanying software, operating systems, and networks in the Internet of Medical Things (IoMT) raises the risk of security compromise as the bulk of IoMT devices are not built to withstand internet attacks. In this work, we have developed a cyber-attack and anomaly detection model based on recursive feature elimination (RFE) and multilayer perceptron (MLP). The RFE approach selected optimal features using logistic regression (LR) and extreme gradient boosting regression (XGBRegressor) kernel functions. MLP parameters were adjusted by using a hyperparameter optimization and 10-fold cross-validation approach was performed for performance evaluations. The developed model was performed on various IoMT cybersecurity datasets, and attained the best accuracy rates of 99.99%, 99.94%, 98.12%, and 96.2%, using Edith Cowan University- Internet of Health Things (ECU-IoHT), Intensive Care Unit (ICU Dataset), Telemetry data, Operating systems’ data, and Network data from the testbed IoT/IIoT network (TON-IoT), and Washington University in St. Louis enhanced healthcare monitoring system (WUSTL-EHMS) datasets, respectively. The proposed method has the ability to counter cyber attacks in healthcare applications.

基于递归特征消除和多层感知器优化的医疗系统网络安全攻击自动检测
医疗物联网(IoMT)中互连医疗设备、配套软件、操作系统和网络的广泛普及增加了安全危害的风险,因为大部分IoMT设备无法抵御互联网攻击。在这项工作中,我们开发了一个基于递归特征消除(RFE)和多层感知器(MLP)的网络攻击和异常检测模型。RFE方法使用逻辑回归(LR)和极端梯度增强回归(XGBRegressor)核函数选择最优特征。采用超参数优化调整MLP参数,并采用10倍交叉验证方法进行性能评估。采用伊迪斯考恩大学健康物联网(ECU-IoHT)、重症监护病房(ICU)数据集、遥测数据、操作系统数据、IoT/IIoT试验台网络(TON-IoT)数据集和圣路易斯华盛顿大学增强医疗监测系统(WUSTL-EHMS)数据集,在多种IoMT网络安全数据集上运行所开发的模型,准确率分别达到99.99%、99.94%、98.12%和96.2%。所提出的方法具有对抗医疗保健应用中的网络攻击的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信