Ilhan Firat Kilincer , Fatih Ertam , Abdulkadir Sengur , Ru-San Tan , U. Rajendra Acharya
{"title":"Automated detection of cybersecurity attacks in healthcare systems with recursive feature elimination and multilayer perceptron optimization","authors":"Ilhan Firat Kilincer , Fatih Ertam , Abdulkadir Sengur , Ru-San Tan , U. Rajendra Acharya","doi":"10.1016/j.bbe.2022.11.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>Widespread proliferation of interconnected healthcare equipment, accompanying software, operating systems, and networks in the Internet of Medical Things (IoMT) raises the risk of security compromise as the bulk of IoMT devices are not built to withstand internet attacks. In this work, we have developed a cyber-attack and anomaly detection model based on recursive feature elimination (RFE) and multilayer </span>perceptron<span> (MLP). The RFE approach selected optimal features using logistic regression<span> (LR) and extreme gradient boosting regression (XGBRegressor) kernel functions. MLP parameters were adjusted by using a hyperparameter optimization and 10-fold cross-validation approach was performed for performance evaluations. The developed model was performed on various IoMT cybersecurity datasets, and attained the best accuracy rates of 99.99%, 99.94%, 98.12%, and 96.2%, using Edith Cowan University- Internet of Health Things (ECU-IoHT), Intensive Care Unit (ICU Dataset), Telemetry data, Operating systems’ data, and Network data from the testbed IoT/IIoT network (TON-IoT), and Washington University in St. Louis enhanced healthcare monitoring system (WUSTL-EHMS) datasets, respectively. The proposed method has the ability to counter cyber attacks in healthcare applications.</span></span></p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"43 1","pages":"Pages 30-41"},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521622001012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 11
Abstract
Widespread proliferation of interconnected healthcare equipment, accompanying software, operating systems, and networks in the Internet of Medical Things (IoMT) raises the risk of security compromise as the bulk of IoMT devices are not built to withstand internet attacks. In this work, we have developed a cyber-attack and anomaly detection model based on recursive feature elimination (RFE) and multilayer perceptron (MLP). The RFE approach selected optimal features using logistic regression (LR) and extreme gradient boosting regression (XGBRegressor) kernel functions. MLP parameters were adjusted by using a hyperparameter optimization and 10-fold cross-validation approach was performed for performance evaluations. The developed model was performed on various IoMT cybersecurity datasets, and attained the best accuracy rates of 99.99%, 99.94%, 98.12%, and 96.2%, using Edith Cowan University- Internet of Health Things (ECU-IoHT), Intensive Care Unit (ICU Dataset), Telemetry data, Operating systems’ data, and Network data from the testbed IoT/IIoT network (TON-IoT), and Washington University in St. Louis enhanced healthcare monitoring system (WUSTL-EHMS) datasets, respectively. The proposed method has the ability to counter cyber attacks in healthcare applications.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.