Dr. Jordan A. Ward-Williams, Vivian Karsten, Dr. Constant M. Guédon, Dr. Timothy A. Baart, Dr. Peter Munnik, Prof. Andrew J. Sederman, Prof. Mick D. Mantle, Dr. Qingyuan Zheng, Prof. Lynn F. Gladden
{"title":"Extending NMR Tortuosity Measurements to Paramagnetic Catalyst Materials Through the Use of Low Field NMR","authors":"Dr. Jordan A. Ward-Williams, Vivian Karsten, Dr. Constant M. Guédon, Dr. Timothy A. Baart, Dr. Peter Munnik, Prof. Andrew J. Sederman, Prof. Mick D. Mantle, Dr. Qingyuan Zheng, Prof. Lynn F. Gladden","doi":"10.1002/cmtd.202200025","DOIUrl":null,"url":null,"abstract":"<p>Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self-diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (>300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin-spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO<sub>2</sub>) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"2 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202200025","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202200025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Pulsed Field Gradient (PFG) NMR is recognised as an analytical technique used to characterise the tortuosity of porous media by measurement of the self-diffusion coefficient of a fluid contained within the pore space of the material of interest. Such measurements are usually performed on high magnetic field NMR hardware (>300 MHz). However, many materials of interest, in particular heterogeneous catalysts, contain significant amounts of paramagnetic species, which make such measurements impossible due to their characteristic short spin-spin relaxation times. Here it is demonstrated that by performing PFG NMR measurements on a low field magnet (2 MHz), tortuosity measurements can be obtained for a range of titania (TiO2) based carriers and catalyst precursors containing paramagnetic species up to a 20 wt.% loading. The approach is also used to compare the tortuosity of two catalyst precursors of the same metal loading prepared by different methods.