Chloroperoxidase applications in chemical synthesis of industrial relevance

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Y. Bhandari, Hemlata Sajwan, Parul Pandita, V. Koteswara Rao
{"title":"Chloroperoxidase applications in chemical synthesis of industrial relevance","authors":"Y. Bhandari, Hemlata Sajwan, Parul Pandita, V. Koteswara Rao","doi":"10.1080/10242422.2022.2107919","DOIUrl":null,"url":null,"abstract":"Abstract Biocatalysts can accelerate the catalysis of a chemical reaction that is difficult to synthesize with typical chemical methods. The global enzyme market size is predicted to expand at a CAGR of 6.5% from 2021 to 2028. Enzymatic reactions are highly chemo, regio, and stereoselective and produce various fine chemicals such as drugs, agrochemicals, and fragrance molecules. Peroxidases (PO) (EC 1.11.1.x) are a large class of enzymes that play an important role in various biological processes. Chloroperoxidase (CPO, EC 1.1.1.10) is a versatile fungal haem-thiolate protein that is useful in the asymmetric synthesis of chiral building blocks and has an important role in a number of biological processes. CPO’s main biological role is chlorination, although it also catalyses haem PO, catalase (CAT), and reactions similar to cytochrome P450. However, CPO performs both oxidation and stereo-specific halogenation of chemical molecules. The haem and vanadium POs are produced by Caldariomyces fumago, and Curvularia inaequalis, respectively, and are capable of halogenating the flavanones, naringenin, and hesperetin, at C-6 and C-8 in the presence of either Cl− or Br−. In this review, we discussed the various applications of CPO including synthesis of epoxides, drugs, halogenation of thymol, nitriles, the Aza-Achmatowicz reaction, and biomedical applications such as cancer and biosensors. In light of these novel features, we have provided a detailed review of CPOs and their applications in various stereoselective chemical transformations of industrial relevance.","PeriodicalId":8824,"journal":{"name":"Biocatalysis and Biotransformation","volume":"41 1","pages":"403 - 420"},"PeriodicalIF":1.4000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and Biotransformation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10242422.2022.2107919","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Biocatalysts can accelerate the catalysis of a chemical reaction that is difficult to synthesize with typical chemical methods. The global enzyme market size is predicted to expand at a CAGR of 6.5% from 2021 to 2028. Enzymatic reactions are highly chemo, regio, and stereoselective and produce various fine chemicals such as drugs, agrochemicals, and fragrance molecules. Peroxidases (PO) (EC 1.11.1.x) are a large class of enzymes that play an important role in various biological processes. Chloroperoxidase (CPO, EC 1.1.1.10) is a versatile fungal haem-thiolate protein that is useful in the asymmetric synthesis of chiral building blocks and has an important role in a number of biological processes. CPO’s main biological role is chlorination, although it also catalyses haem PO, catalase (CAT), and reactions similar to cytochrome P450. However, CPO performs both oxidation and stereo-specific halogenation of chemical molecules. The haem and vanadium POs are produced by Caldariomyces fumago, and Curvularia inaequalis, respectively, and are capable of halogenating the flavanones, naringenin, and hesperetin, at C-6 and C-8 in the presence of either Cl− or Br−. In this review, we discussed the various applications of CPO including synthesis of epoxides, drugs, halogenation of thymol, nitriles, the Aza-Achmatowicz reaction, and biomedical applications such as cancer and biosensors. In light of these novel features, we have provided a detailed review of CPOs and their applications in various stereoselective chemical transformations of industrial relevance.
氯过氧化物酶在化学合成中的应用具有工业意义
摘要生物催化剂可以加速催化典型化学方法难以合成的化学反应。预计从2021年到2028年,全球酶市场规模将以6.5%的复合年增长率增长。酶促反应具有高度的化学、区域和立体选择性,并产生各种精细化学品,如药物、农用化学品和芳香分子。过氧化物酶(PO, EC 1.11.1.x)是一类在多种生物过程中起重要作用的酶。氯过氧化物酶(Chloroperoxidase, EC 1.1.1.10)是一种多用途真菌血硫酸酯蛋白,可用于手性构建块的不对称合成,并在许多生物过程中发挥重要作用。CPO的主要生物学作用是氯化作用,尽管它也催化血红素PO、过氧化氢酶(CAT)和类似于细胞色素P450的反应。然而,CPO同时进行化学分子的氧化和立体特异性卤化。血红素和钒POs分别由fumago Caldariomyces和Curvularia inaequalis产生,并且能够在Cl−或Br−存在下在C-6和C-8下卤化黄酮、柚皮素和橙皮素。本文综述了CPO在环氧化合物、药物、百里香酚卤化、腈类化合物、Aza-Achmatowicz反应以及在癌症和生物传感器等生物医学领域的应用。鉴于这些新颖的特点,我们提供了详细的综述CPOs及其在工业相关的各种立体选择性化学转化中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biocatalysis and Biotransformation
Biocatalysis and Biotransformation 生物-生化与分子生物学
CiteScore
4.40
自引率
5.60%
发文量
37
审稿时长
3 months
期刊介绍: Biocatalysis and Biotransformation publishes high quality research on the application of biological catalysts for the synthesis, interconversion or degradation of chemical species. Papers are published in the areas of: Mechanistic principles Kinetics and thermodynamics of biocatalytic processes Chemical or genetic modification of biocatalysts Developments in biocatalyst''s immobilization Activity and stability of biocatalysts in non-aqueous and multi-phasic environments, including the design of large scale biocatalytic processes Biomimetic systems Environmental applications of biocatalysis Metabolic engineering Types of articles published are; full-length original research articles, reviews, short communications on the application of biotransformations, and preliminary reports of novel catalytic activities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信